Do you want to publish a course? Click here

Brownian motion at short time scales

207   0   0.0 ( 0 )
 Added by Tongcang Li
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Brownian motion has played important roles in many different fields of science since its origin was first explained by Albert Einstein in 1905. Einsteins theory of Brownian motion, however, is only applicable at long time scales. At short time scales, Brownian motion of a suspended particle is not completely random, due to the inertia of the particle and the surrounding fluid. Moreover, the thermal force exerted on a particle suspended in a liquid is not a white noise, but is colored. Recent experimental developments in optical trapping and detection have made this new regime of Brownian motion accessible. This review summarizes related theories and recent experiments on Brownian motion at short time scales, with a focus on the measurement of the instantaneous velocity of a Brownian particle in a gas and the observation of the transition from ballistic to diffusive Brownian motion in a liquid.



rate research

Read More

108 - Baruch Meerson 2019
Mortality introduces an intrinsic time scale into the scale-invariant Brownian motion. This fact has important consequences for different statistics of Brownian motion. Here we are telling three short stories, where spontaneous death, such as radioactive decay, puts a natural limit to lifetime achievements of a Brownian particle. In story 1 we determine the probability distribution of a mortal Brownian particle (MBP) reaching a specified point in space at the time of its death. In story 2 we determine the probability distribution of the area $A=int_0^{T} x(t) dt$ of a MBP on the line. Story 3 addresses the distribution of the winding angle of a MBP wandering around a reflecting disk in the plane. In stories 1 and 2 the probability distributions exhibit integrable singularities at zero values of the position and the area, respectively. In story 3 a singularity at zero winding angle appears only in the limit of very high mortality. A different integrable singularity appears at a nonzero winding angle. It is inherited from the recently uncovered singularity of the short-time large-deviation function of the winding angle for immortal Brownian motion.
We study the effects of an intermittent harmonic potential of strength $mu = mu_0 u$ -- that switches on and off stochastically at a constant rate $gamma$, on an overdamped Brownian particle with damping coefficient $ u$. This can be thought of as a realistic model for realisation of stochastic resetting. We show that this dynamics admits a stationary solution in all parameter regimes and compute the full time dependent variance for the position distribution and find the characteristic relaxation time. We find the exact non-equilibrium stationary state distributions in the limits -- (i) $gammallmu_0 $ which shows a non-trivial distribution, in addition as $mu_0toinfty$, we get back the result for resetting with refractory period; (ii) $gammaggmu_0$ where the particle relaxes to a Boltzmann distribution of an Ornstein-Uhlenbeck process with half the strength of the original potential and (iii) intermediate $gamma=2nmu_0$ for $n=1, 2$. The mean first passage time (MFPT) to find a target exhibits an optimisation with the switching rate, however unlike instantaneous resetting the MFPT does not diverge but reaches a stationary value at large rates. MFPT also shows similar behavior with respect to the potential strength. Our results can be verified in experiments on colloids using optical tweezers.
At fast timescales, the self-similarity of random Brownian motion is expected to break down and be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of instrumentation fast and precise enough to capture this motion. With a newly developed detector, we have been able to observe the Brownian motion of a single particle in an optical trap with 75 MHz bandwidth and sub-{AA}ngstrom spatial precision. We report the first measurements of ballistic Brownian motion as well as the first determination of the velocity autocorrelation function of a Brownian particle. The data are in excellent agreement with theoretical predictions taking into account the inertia of the particle and the surrounding fluid as well as hydrodynamic memory effects.
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index $alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.
138 - Yaming Chen , Wolfram Just 2013
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositions on the one hand and on the backward Kolmogorov equation on the other. For the simple case containing only dry friction, a phase transition phenomenon in the spectrum is found which relates to the position of the exit point, and which affects the tail of the FPT distribution. For the model containing as well a driving force and viscous friction the impact of the corresponding stick-slip transition and of the transition to ballistic exit is evaluated quantitatively. The proposed model is one of the very few cases where FPT properties are accessible by analytical means.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا