Do you want to publish a course? Click here

Defect-mediated spin relaxation and dephasing in graphene

151   0   0.0 ( 0 )
 Added by Joshua Folk
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A principal motivation to develop graphene for future devices has been its promise for quantum spintronics. Hyperfine and spin-orbit interactions are expected to be negligible in single-layer graphene. Spin transport experiments, on the other hand, show that graphenes spin relaxation is orders of magnitude faster than predicted. We present a quantum interference measurement that disentangles sources of magnetic and non-magnetic decoherence in graphene. Magnetic defects are shown to be the primary cause of spin relaxation, while spin-orbit interaction is undetectably small.



rate research

Read More

The possibility of transporting spin information over long distances in graphene, owing to its small intrinsic spin-orbit coupling (SOC) and the absence of hyperfine interaction, has led to intense research into spintronic applications. However, measured spin relaxation times are orders of magnitude smaller than initially predicted, while the main physical process for spin dephasing and its charge-density and disorder dependences remain unconvincingly described by conventional mechanisms. Here, we unravel a spin relaxation mechanism for nonmagnetic samples that follows from an entanglement between spin and pseudospin driven by random SOC, which makes it unique to graphene. The mixing between spin and pseudospin-related Berrys phases results in fast spin dephasing even when approaching the ballistic limit, with increasing relaxation times away from the Dirac point, as observed experimentally. The SOC can be caused by adatoms, ripples or even the substrate, suggesting novel spin manipulation strategies based on the pseudospin degree of freedom.
We study the spin relaxation in graphene due to magnetic moments induced by defects. We propose and employ in our studies a microscopic model that describes magnetic impurity scattering processes mediated by charge puddles. This model incorporates the spin texture related to the defect-induced state. We calibrate our model parameters using experimentally-inferred values. The results we obtain for the spin relaxation times are in very good agreement with experimental findings. Our study leads to a comprehensive explanation for the short spin relaxation times reported in the experimental literature. We also propose a new interpretation for the puzzling experimental observation of enhanced spin relaxation times in hydrogenated graphene samples in terms of a combined effect due to disorder configurations that lead to an increased coupling to the magnetic moments and the tunability of the defect-induced $pi$-like magnetism in graphene.
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the non-local geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field $B$ applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B = 0 and B = 2 T shows a 20 % decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin orbit effective fields in the in-plane and out-of-plane directions.
We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density and temperature. The spin relaxation time $tau_s$ scales inversely with the mobility $mu$ of BLG samples both at room temperature and at low temperature. This indicates the importance of Dyakonov - Perel spin scattering in BLG. Spin relaxation times of up to 2 ns are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of Dyakonov-Perel spin scattering in BLG. In comparison to SLG, significant changes in the density dependence of $tau_s$ are observed as a function of temperature.
We investigate tunneling in metal-insulator-metal junctions employing few atomic layers of hexagonal boron nitride (hBN) as the insulating barrier. While the low-bias tunnel resistance increases nearly exponentially with barrier thickness, subtle features are seen in the current-voltage curves, indicating marked influence of the intrinsic defects present in the hBN insulator on the tunneling transport. In particular, single electron charging events are observed, which are more evident in thicker-barrier devices where direct tunneling is substantially low. Furthermore, we find that annealing the devices modifies the defect states and hence the tunneling signatures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا