Do you want to publish a course? Click here

High-precision Monte Carlo study of the three-dimensional XY model on GPU

282   0   0.0 ( 0 )
 Added by Ying-Jer Kao
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform large-scale Monte Carlo simulations of the classical XY model on a three-dimensional $Ltimes L times L$ cubic lattice using the graphics processing unit (GPU). By the combination of Metropolis single-spin flip, over-relaxation and parallel-tempering methods, we simulate systems up to L=160. Performing the finite-size scaling analysis, we obtain estimates of the critical exponents for the three-dimensional XY universality class: $alpha=-0.01293(48)$ and $ u=0.67098(16)$. Our estimate for the correlation-length exponent $ u$, in contrast to previous theoretical estimates, agrees with the most recent experimental estimate $ u_{rm exp}=0.6709(1)$ at the superfluid transition of $^4$He in a microgravity environment.



rate research

Read More

We present a worm-type Monte Carlo study of several typical models in the three-dimensional (3D) U(1) universality class, which include the classical 3D XY model in the directed flow representation and its Villain version, as well as the 2D quantum Bose-Hubbard (BH) model with unitary filling in the imaginary-time world-line representation. From the topology of the configurations on a torus, we sample the superfluid stiffness $rho_s$ and the dimensionless wrapping probability $R$. From the finite-size scaling analyses of $rho_s$ and of $R$, we determine the critical points as $T_c ({rm XY}) =2.201, 844 ,1(5)$ and $T_c ({rm Villain})=0.333, 067, 04(7)$ and $(t/U)_c ({rm BH})=0.059 , 729 ,1(8)$, where $T$ is the temperature for the classical models, and $t$ and $U$ are respectively the hopping and on-site interaction strength for the BH model. The precision of our estimates improves significantly over that of the existing results. Moreover, it is observed that at criticality, the derivative of a wrapping probability with respect to $T$ suffers from negligible leading corrections and enables a precise determination of the correlation length critical exponent as $ u=0.671 , 83(18)$. In addition, the critical exponent $eta$ is estimated as $eta=0.038 , 53(48)$ by analyzing a susceptibility-like quantity. We believe that these numerical results would provide a solid reference in the study of classical and quantum phase transitions in the 3D U(1) universality, including the recent development of the conformal bootstrap method.
We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.
To study epitaxial thin-film growth, a new model is introduced and extensive kinetic Monte Carlo simulations performed for a wide range of fluxes and temperatures. Varying the deposition conditions, a rich growth diagram is found. The model also reproduces several known regimes and in the limit of low particle mobility a new regime is defined. Finally, a relation is postulated between the temperatures of the kinetic and thermal roughening transitions.
124 - M.M. Tsypin , H.W.J. Blote 1999
We study the probability distribution P(M) of the order parameter (average magnetization) M, for the finite-size systems at the critical point. The systems under consideration are the 3-dimensional Ising model on a simple cubic lattice, and its 3-state generalization known to have remarkably small corrections to scaling. Both models are studied in a cubic box with periodic boundary conditions. The model with reduced corrections to scaling makes it possible to determine P(M) with unprecedented precision. We also obtain a simple, but remarkably accurate approximate formula describing the universal shape of P(M).
254 - J. H. Pixley , A. P. Young 2008
We study the XY spin glass by large-scale Monte Carlo simulations for sizes up to 24^3, down to temperatures below the transition temperature found in earlier work. The data for the larger sizes show more marginal behavior than that for the smaller sizes indicating that the lower critical dimension is close to, and possibly equal to three. We find that the spins and chiralities behave in a very similar manner. We also address the optimal ratio of over-relaxation to Metropolis sweeps in the simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا