Do you want to publish a course? Click here

Fast Reset and Suppressing Spontaneous Emission of a Superconducting Qubit

130   0   0.0 ( 0 )
 Added by Matthew Reed
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spontaneous emission through a coupled cavity can be a significant decay channel for qubits in circuit quantum electrodynamics. We present a circuit design that effectively eliminates spontaneous emission due to the Purcell effect while maintaining strong coupling to a low-Q cavity. Excellent agreement over a wide range in frequency is found between measured qubit relaxation times and the predictions of a circuit model. Using fast (nanosecond time-scale) flux biasing of the qubit, we demonstrate in situ control of qubit lifetime over a factor of 50. We realize qubit reset with 99.9% fidelity in 120 ns.



rate research

Read More

We present a detailed characterization of coherence in seven transmon qubits in a circuit QED architecture. We find that spontaneous emission rates are strongly influenced by far off-resonant modes of the cavity and can be understood within a semiclassical circuit model. A careful analysis of the spontaneous qubit decay into a microwave transmission-line cavity can accurately predict the qubit lifetimes over two orders of magnitude in time and more than an octave in frequency. Coherence times $T_1$ and $T_2^*$ of more than a microsecond are reproducibly demonstrated.
Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving certain qubit and cavity transitions. Our protocol, called the double drive reset of population is tested on a superconducting transmon qubit in a three-dimensional cavity. Using a new method for measuring population, we show that we can prepare the ground state with a fidelity of at least 99.5 % in less than 3 microseconds; faster times and higher fidelity are predicted upon parameter optimization.
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmon artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the $|f,0rangle$ and $|g,1rangle$ states of the coupled transmon-resonator system, with $|grangle$ and $|frangle$ denoting the ground and second excited states of the transmon, and $|0rangle$ and $|1rangle$ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with $0.2%$ residual excitation in less than $500 , rm{ns}$. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.
Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with measurement of the leakage population. We characterize single qubit gates in a superconducting qubit, and by refining our use of Derivative Reduction by Adiabatic Gate (DRAG) pulse shaping along with detuning of the pulses, we obtain gate errors consistently below $10^{-3}$ and leakage rates at the $10^{-5}$ level. With the control optimized, we find that a significant portion of the remaining leakage is due to incoherent heating of the qubit.
Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the device as a field-effect transistor (FET). Here, we exploit this feature to compare in the same device characteristics of the qubit, such as frequency and relaxation time, with related transport properties such as critical supercurrent and normal-state resistance. Gradually opening the FET to the monitoring circuit allows the influence of weak-to-strong DC monitoring of a live qubit to be measured. A model of this influence yields excellent agreement with experiment, demonstrating a relaxation rate mediated by a gate-controlled environmental coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا