Do you want to publish a course? Click here

Implications for compact stars of a soft nuclear equation of state from heavy-ion data

315   0   0.0 ( 0 )
 Added by Laura Tolos
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the implications on compact star properties of a soft nuclear equation of state determined from kaon production at subthreshold energies in heavy-ion collisions. On one hand, we apply these results to study radii and moments of inertia of light neutron stars. Heavy-ion data provides constraints on nuclear matter at densities relevant for those stars and, in particular, to the density dependence of the symmetry energy of nuclear matter. On the other hand, we derive a limit for the highest allowed neutron star mass of three solar masses. For that purpose, we use the information on the nucleon potential obtained from the analysis of the heavy-ion data combined with causality on the nuclear equation of state.



rate research

Read More

Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent bag constant to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs. bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Aims: We present a new microscopic hadron-quark hybrid equation of state model for astrophysical applications, from which compact hybrid star configurations are constructed. These are composed of a quark core and a hadronic shell with a first-order phase transition at their interface. The resulting mass-radius relations are in accordance with the latest astrophysical constraints. Methods: The quark matter description is based on a quantum chromodynamics (QCD) motivated chiral approach with higher-order quark interactions in the Dirac scalar and vector coupling channels. For hadronic matter we select a relativistic mean-field equation of state with density-dependent couplings. Since the nucleons are treated in the quasi-particle framework, an excluded volume correction has been included for the nuclear equation of state at suprasaturation density which takes into account the finite size of the nucleons. Results: These novel aspects, excluded volume in the hadronic phase and the higher-order repulsive interactions in the quark phase, lead to a strong first-order phase transition with large latent heat, i.e. the energy-density jump at the phase transition, which fulfils a criterion for a disconnected third-family branch of compact stars in the mass-radius relationship. These twin stars appear at high masses ($sim$ 2 M$_odot$) that are relevant for current observations of high-mass pulsars. Conclusions: This analysis offers a unique possibility by radius observations of compact stars to probe the QCD phase diagram at zero temperature and large chemical potential and even to support the existence of a critical point in the QCD phase diagram.
The production of pions and kaons has been measured in Au+Au collisions at beam energies from 0.6 to 1.5 AGeV with the Kaon Spectrometer at SIS/GSI. The K+ meson multiplicity per nucleon is enhanced in Au+Au collisions by factors up to 6 relative to C+C reactions whereas the corresponding pion ratio is reduced. The ratio of the K+ meson excitation functions for Au+Au and C+C collisions increases with decreasing beam energy. This behavior is expected for a soft nuclear equation-of-state.
The equation of state (EoS) of hot and dense matter is a fundamental input to describe static and dynamical properties of neutron stars, core-collapse supernovae and binary compact-star mergers. We review the current status of the EoS for compact objects, that have been studied with both ab-initio many-body approaches and phenomenological models. We limit ourselves to the description of EoSs with purely nucleonic degrees of freedom, disregarding the appearance of strange baryonic matter and/or quark matter. We compare the theoretical predictions with different data coming from both nuclear physics experiments and astrophysical observations. Combining the complementary information thus obtained greatly enriches our insights into the dense nuclear matter properties. Current challenges in the description of the EoS are also discussed, mainly focusing on the model dependence of the constraints extracted from either experimental or observational data (specifically, concerning the symmetry energy), the lack of a consistent and rigorous many-body treatment at zero and finite temperature of the matter encountered in compact stars (e.g. problem of cluster formation and extension of the EoS to very high temperatures), the role of nucleonic three-body forces, and the dependence of the direct URCA processes on the EoS.
We present a first step in developing a benchmark equation-of-state (EoS) model for multi-messenger astronomy that unifies the thermodynamics of quark and hadronic degrees of freedom. A Lagrangian approach to the thermodynamic potential of quark-meson-nucleon (QMN) matter was used. In this approach, dynamical chiral-symmetry breaking is described by the scalar mean-field dynamics coupled to quarks and nucleons and their chiral partners, whereby its restoration occurs in the hadronic phase by parity doubling, as well as in the quark phase. Quark confinement was achieved by an auxiliary scalar field that parametrizes a dynamical infrared cutoff in the quark sector, serving as an ultraviolet cutoff for the nucleonic phase space. The gap equations were solved for the isospin-symmetric case, as well as for neutron star (NS) conditions. We also calculated the mass-radius (MR) relation of NSs and their tidal deformability parameter. The obtained EoS is in accordance with nuclear matter properties at saturation density and with the flow constraint from heavy ion collision experiments. For isospin-asymmetric matter, a sequential occurrence of light quark flavors is obtained, allowing for a mixed phase of chirally-symmetric nucleonic matter with deconfined down quarks. The MR relations and TDs for compact stars fulfill the constraints from the latest astrophysical observations for PSR J0740+6620, PSR J0030+0451, and the NS merger GW170817, whereby the tension between the maximum mass and compactness constraints rather uniquely fixes the model parameters. The model predicts the existence of stars with a core of chirally restored but purely hadronic (confined) matter for masses beyond $1.8~M_odot$. Stars with pure-quark matter cores are found to be unstable against the gravitational collapse. This instability is shifted to even higher densities if repulsive interactions between quarks are included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا