No Arabic abstract
The equation of state (EoS) of hot and dense matter is a fundamental input to describe static and dynamical properties of neutron stars, core-collapse supernovae and binary compact-star mergers. We review the current status of the EoS for compact objects, that have been studied with both ab-initio many-body approaches and phenomenological models. We limit ourselves to the description of EoSs with purely nucleonic degrees of freedom, disregarding the appearance of strange baryonic matter and/or quark matter. We compare the theoretical predictions with different data coming from both nuclear physics experiments and astrophysical observations. Combining the complementary information thus obtained greatly enriches our insights into the dense nuclear matter properties. Current challenges in the description of the EoS are also discussed, mainly focusing on the model dependence of the constraints extracted from either experimental or observational data (specifically, concerning the symmetry energy), the lack of a consistent and rigorous many-body treatment at zero and finite temperature of the matter encountered in compact stars (e.g. problem of cluster formation and extension of the EoS to very high temperatures), the role of nucleonic three-body forces, and the dependence of the direct URCA processes on the EoS.
We review the current status and recent progress of microscopic many-body approaches and phenomenological models, which are employed to construct the equation of state of neutron stars. The equation of state is relevant for the description of their structure and dynamical properties, and it rules also the dynamics of core-collapse supernovae and binary neutron star mergers. We describe neutron star matter assuming that the main degrees of freedom are nucleons and hyperons, disregarding the appearance of quark matter. We compare the theoretical predictions of the different equation-of-state models with the currently available data coming from both terrestrial laboratory experiments and recent astrophysical observations. We also analyse the importance of the nuclear strong interaction and equation of state for the cooling properties of neutron stars. We discuss the main open challenges in the description of the equation of state, mainly focusing on the limits of the different many-body techniques, the so-called hyperon puzzle, and the dependence of the direct URCA processes on the equation of state.
Born in the aftermath of core collapse supernovae, neutron stars contain matter under extraordinary conditions of density and temperature that are difficult to reproduce in the laboratory. In recent years, neutron star observations have begun to yield novel insights into the nature of strongly interacting matter in the high-density regime where current theoretical models are challenged. At the same time, chiral effective field theory has developed into a powerful framework to study nuclear matter properties with quantified uncertainties in the moderate-density regime for modeling neutron stars. In this article, we review recent developments in chiral effective field theory and focus on many-body perturbation theory as a computationally efficient tool for calculating the properties of hot and dense nuclear matter. We also demonstrate how effective field theory enables statistically meaningful comparisons between nuclear theory predictions, nuclear experiments, and observational constraints on the nuclear equation of state.
This volume contains most of the links to the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Iberico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included.
Differences in the equation of state (EOS) of dense matter translate into differences in astrophysical simulations and their multi-messenger signatures. Thus, extending the number of EOSs for astrophysical simulations allows us to probe the effect of different aspects of the EOS in astrophysical phenomena. In this work, we construct the EOS of hot and dense matter based on the Akmal, Pandharipande, and Ravenhall (APR) model and thereby extend the open-source SROEOS code which computes EOSs of hot dense matter for Skyrme-type parametrizations of the nuclear forces. Unlike Skrme-type models, in which parameters of the interaction are fit to reproduce the energy density of nuclear matter and/or properties of heavy nuclei, the EOS of APR is obtained from potentials resulting from fits to nucleon-nucleon scattering and properties of light nuclei. In addition, this EOS features a phase transition to a neutral pion condensate at supra-nuclear densities. We show that differences in the effective masses between EOSs have consequences for the properties of nuclei in the sub-nuclear inhomogeneous phase of matter. We also test the new EOS of APR in spherically symmetric core-collapse of massive stars with $15M_odot$ and $40M_odot$, respectively. We find that the phase transition in the EOS of APR speeds up the collapse of the star. However, this phase transition does not generate a second shock wave or another neutrino burst as reported for the hadron-to-quark phase transition. The reason for this difference is that the onset of the phase transition in the EOS of APR occurs at larger densities than for the quark-to-hadron transition employed earlier which results in a significantly smaller softening of the high density EOS.
The detection of the GW170817 neutron star merger event has incited an intense research activity towards the understanding of the nuclear matter equation of state. In this paper we compare in particular the pressure-density relation obtained from heavy-ion collisions with the analysis of the NS merger event. Moreover, we present recent calculations of neutron stars moment of inertia and tidal deformability using various microscopic equations of state for nuclear and hybrid star configurations, and confirm several universal relations. We also discuss the recent constraints for the NS radii determined by GW170817, and find compatible radii between 12 and 13 kilometers, thus identifying the suitable equations of state.