Do you want to publish a course? Click here

A novel technique for single-shot energy-resolved 2D X-ray imaging of plasmas relevant for the Inertial Confinement Fusion

398   0   0.0 ( 0 )
 Added by Luca Labate
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A novel X-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any X-ray photon energy range, over a large domain, on a single-shot basis. The device (named Energy-encoded Pinhole Camera - EPiC) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available X-ray spectral domain is only limited by the Quantum Efficiency of scientific-grade X-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any X-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent ICF related experiments will be reported in order to detail the new diagnostic.



rate research

Read More

Neutron penumbral imaging technique has been successfully used as the diagnosis method in Inertial Confined Fusion. To help the design of the imaging systems in the future in CHINA. We construct the Monte carlo imaging system by Geant4. Use the point spread function from the simulation and decode algorithm (Lucy-Rechardson algorithm) we got the recovery image.
The interaction of lasers with plasmas very often leads to nonlocal transport conditions, where the classical hydrodynamic model fails to describe important microscopic physics related to highly mobile particles. In this study we analyze and further propose a modification of the Albritton- Williams-Bernstein-Swartz collision operator Phys. Rev. Lett 57, 1887 (1986) for the nonlocal electron transport under conditions relevant to ICF. The electron distribution function provided by this modification exhibits some very desirable properties when compared to the full Fokker- Planck operator in the local diffusive regime, and also performs very well when benchmarked against Vlasov-Fokker-Planck and collisional PIC codes in the nonlocal transport regime, where we find that the effect of the electric field via the nonlocal Ohms law is an essential ingredient in order to capture the electron kinetics properly.
A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named as three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is made of three cylindrical hohlraums orthogonally jointed. Laser beams are injected through every entrance hole with the same incident angle of 55{deg}. The view-factor simulation result shows that the time-varying drive asymmetry of TACH is no more than 1.0% in the whole drive pulse period without any supplementary technology such as beam phasing etc. Its coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, the proposed hohlraum provides a competitive candidate for ignition hohlraum.
We report first direct experimental evidence of interspecies ion separation in direct-drive ICF experiments performed at the OMEGA laser facility via spectrally, temporally and spatially resolved imaging x-ray-spectroscopy data [S. C. Hsu et al., EPL 115, 65001 (2016)]. These experiments were designed based on the expectation that interspecies ion thermo-diffusion would be strongest for species with large mass and charge difference. The targets were spherical plastic shells filled with D2 and a trace amount of Ar (0.1% or 1% by atom). Ar K-shell spectral features were observed primarily between the time of first-shock convergence and slightly before neutron bang time, using a time- and space-integrated spectrometer, a streaked crystal spectrometer, and two gated multi-monochromatic x-ray imagers fielded along quasi-orthogonal lines of sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal deviation from the initial 1% Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree reasonably with calculated profiles associated with the incoming and rebounding first shock.
The hyperspectral X-ray imaging has been long sought in various fields from material analysis to medical diagnosis. Here we propose a new semiconductor detector structure to realize energy-resolved imaging at potentially low cost. The working principle is based on the strong energy-dependent absorption of X-ray in solids. Namely, depending on the energy, X-ray photons experience dramatically different attenuation. An array or matrix of semiconductor cells is to map the X-ray intensity along its trajectory. The X-ray spectrum could be extracted from a Laplace like transform or even a supervised machine learning. We demonstrated an energy-resolved X-ray detection with a regular silicon camera.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا