Do you want to publish a course? Click here

Fitting Skyrme functionals using linear response theory

236   0   0.0 ( 0 )
 Added by Alessandro Pastore
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Recently, it has been recently shown that the linear response theory in symmetric nuclear matter can be used as a tool to detect finite size instabilities for different Skyrme functionals. In particular it has been shown that there is a correlation between the density at which instabilities occur in infinite matter and the instabilities in finite nuclei. In this article we present a new fitting protocol that uses this correlation to add new additional constraint in Symmetric Infinite Nuclear Matter in order to ensure the stability of finite nuclei against matter fluctuation in all spin and isospin channels. As an application, we give the parameters set for a new Skyrme functional which includes central and spin-orbit parts and which is free from instabilities by construction.



rate research

Read More

We develop a new formulation of the continuum quasiparticle random phase approximation (QRPA) in which the residual interaction is derived directly from the Skyrme energy functional, keeping all the velocity dependent terms of the Skyrme effective interaction. Numerical analysis using the SkM$^*$ parameter set is performed for the isovector dipole and the isovector/isoscalar quadrupole responses in $^{20}$O and $^{54}$Ca. It is shown that the energy-weighted sum rule including the enhancement factors for the isovector responses is satisfied with good accuracy. We investigate also how the velocity dependent terms influence the strength distribution and the transition densities of the low-lying surface modes and the giant resonances.
We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and experiment. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more, or one less neutron or proton. Theoretically, bare SPEs, before being confronted with experiment, must be corrected for the effects of the particle-vibration-coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with experiment, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.
92 - N. Schunck , K. R. Quinlan , 2020
In spite of numerous scientific and practical applications, there is still no comprehensive theoretical description of the nuclear fission process based solely on protons, neutrons and their interactions. The most advanced simulations of fission are currently carried out within nuclear density functional theory (DFT). In spite of being fully quantum-mechanical and rooted in the theory of nuclear forces, DFT still depends on a dozen or so parameters characterizing the energy functional. Calibrating these parameters on experimental data results in uncertainties that must be quantified for applications. This task is very challenging because of the high computational cost of DFT calculations for fission. In this paper, we use Gaussian processes to build emulators of DFT models in order to quantify and propagate statistical uncertainties of theoretical predictions for a range of nuclear deformations relevant to describing the fission process.
We propose a new approach to determine the strength of the charge symmetry breaking (CSB) term in the framework of Skyrme density functional theory. It is shown that once textit{ab initio} calculations are available including accurate description of isospin symmetry breaking terms in medium and heavy nuclei, the mass difference of mirror nuclei as well as the neutron-skin thickness of doubly closed shell nuclei can be used to constrain the strength of CSB interaction with an uncertainty less than $ 6 , % $, separately from other isospin breaking forces. This method opens a new vista of textit{ab initio} nuclear energy density functionals.
A foundational question in relativistic fluid mechanics concerns the properties of the hydrodynamic gradient expansion at large orders. We establish the precise conditions under which this gradient expansion diverges for a broad class of microscopic theories admitting a relativistic hydrodynamic limit, in the linear regime. Our result does not rely on highly symmetric fluid flows utilized by previous studies of heavy-ion collisions and cosmology. The hydrodynamic gradient expansion diverges whenever energy density or velocity fields have support in momentum space exceeding a critical momentum, and converges otherwise. This critical momentum is an intrinsic property of the microscopic theory and is set by branch point singularities of hydrodynamic dispersion relations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا