Do you want to publish a course? Click here

The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory

168   0   0.0 ( 0 )
 Added by Zvi Bern
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We give a representation of the parity-even part of the planar two-loop six-gluon MHV amplitude of N=4 super-Yang-Mills theory, in terms of loop-momentum integrals with simple dual conformal properties. We evaluate the integrals numerically in order to test directly the ABDK/BDS all-loop ansatz for planar MHV amplitudes. We find that the ansatz requires an additive remainder function, in accord with previous indications from strong-coupling and Regge limits. The planar six-gluon amplitude can also be compared with the hexagonal Wilson loop computed by Drummond, Henn, Korchemsky and Sokatchev in arXiv:0803.1466 [hep-th]. After accounting for differing singularities and other constants independent of the kinematics, we find that the Wilson loop and MHV-amplitude remainders are identical, to within our numerical precision. This result provides non-trivial confirmation of a proposed n-point equivalence between Wilson loops and planar MHV amplitudes, and suggests that an additional mechanism besides dual conformal symmetry fixes their form at six points and beyond.



rate research

Read More

The connection of maximally supersymmetric Yang-Mills theory to the (2,0) theory in six dimensions has raised the possibility that it might be perturbatively ultraviolet finite in five dimensions. We test this hypothesis by computing the coefficient of the first potential ultraviolet divergence of planar (large N_c) maximally supersymmetric Yang-Mills theory in D = 5, which occurs at six loops. We show that the coefficient is nonvanishing. Furthermore, the numerical value of the divergence falls very close to an approximate exponential formula based on the coefficients of the divergences through five loops. This formula predicts the approximate values of the ultraviolet divergence at loop orders L > 6 in the critical dimension D = 4 + 6/L. To obtain the six-loop divergence we first construct the planar six-loop four-point amplitude integrand using generalized unitarity. The ultraviolet divergence follows from a set of vacuum integrals, which are obtained by expanding the integrand in the external momenta. The vacuum integrals are integrated via sector decomposition, using a modified version of the FIESTA program.
159 - C. Anastasiou , Z. Bern , L. Dixon 2003
The collinear factorization properties of two-loop scattering amplitudes in dimensionally-regulated N=4 super-Yang-Mills theory suggest that, in the planar (t Hooft) limit, higher-loop contributions can be expressed entirely in terms of one-loop amplitudes. We demonstrate this relation explicitly for the two-loop four-point amplitude and, based on the collinear limits, conjecture an analogous relation for n-point amplitudes. The simplicity of the relation is consistent with intuition based on the AdS/CFT correspondence that the form of the large N_c L-loop amplitudes should be simple enough to allow a resummation to all orders.
We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.
We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, and we review a new procedure to regulate flat directions by modifying the moduli equations in a manner compatible with this supersymmetry. This procedure defines an improved lattice action that we have begun to use in numerical calculations. We discuss some highlights of these investigations, including the static potential and an update on the question of a possible sign problem in the lattice theory.
Integral invariants in maximally supersymmetric Yang-Mills theories are discussed in spacetime dimensions $4leq Dleq 10$ for $SU(k)$ gauge groups. It is shown that, in addition to the action, there are three special invariants in all dimensions. Two of these, the single- and double-trace $F^4$ invariants, are of Chern-Simons type in $D=9,10$ and BPS type in $Dleq 8$, while the third, the double-trace of two derivatives acting on $F^4$, can be expressed in terms of a gauge-invariant super-$D$-form in all dimensions. We show that the super-ten-forms for $D=10$ $F^4$ invariants have interesting cohomological properties and we also discuss some features of other invariants, including the single-trace $d^2 F^4$, which has a special form in $D=10$. The implications of these results for ultra-violet divergences are discussed in the framework of algebraic renormalisation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا