Do you want to publish a course? Click here

MLPACK: A Scalable C++ Machine Learning Library

218   0   0.0 ( 0 )
 Added by Ryan Curtin
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

MLPACK is a state-of-the-art, scalable, multi-platform C++ machine learning library released in late 2011 offering both a simple, consistent API accessible to novice users and high performance and flexibility to expert users by leveraging modern features of C++. MLPACK provides cutting-edge algorithms whose benchmarks exhibit far better performance than other leading machine learning libraries. MLPACK version 1.0.3, licensed under the LGPL, is available at http://www.mlpack.org.



rate research

Read More

With the increased availability of rich tactile sensors, there is an equally proportional need for open-source and integrated software capable of efficiently and effectively processing raw touch measurements into high-level signals that can be used for control and decision-making. In this paper, we present PyTouch -- the first machine learning library dedicated to the processing of touch sensing signals. PyTouch, is designed to be modular, easy-to-use and provides state-of-the-art touch processing capabilities as a service with the goal of unifying the tactile sensing community by providing a library for building scalable, proven, and performance-validated modules over which applications and research can be built upon. We evaluate PyTouch on real-world data from several tactile sensors on touch processing tasks such as touch detection, slip and object pose estimations. PyTouch is open-sourced at https://github.com/facebookresearch/pytouch .
149 - Akira SaiToh 2013
ZKCM is a C++ library developed for the purpose of multiprecision matrix computation, on the basis of the GNU MP and MPFR libraries. It provides an easy-to-use syntax and convenient functions for matrix manipulations including those often used in numerical simulations in quantum physics. Its extension library, ZKCM_QC, is developed for simulating quantum computing using the time-dependent matrix-product-state simulation method. This paper gives an introduction about the libraries with practical sample programs.
61 - Oleg Smirnov 2021
The adoption of neural networks and deep learning in non-Euclidean domains has been hindered until recently by the lack of scalable and efficient learning frameworks. Existing toolboxes in this space were mainly motivated by research and education use cases, whereas practical aspects, such as deploying and maintaining machine learning models, were often overlooked. We attempt to bridge this gap by proposing TensorFlow RiemOpt, a Python library for optimization on Riemannian manifolds in TensorFlow. The library is designed with the aim for a seamless integration with the TensorFlow ecosystem, targeting not only research, but also streamlining production machine learning pipelines.
Pylearn2 is a machine learning research library. This does not just mean that it is a collection of machine learning algorithms that share a common API; it means that it has been designed for flexibility and extensibility in order to facilitate research projects that involve new or unusual use cases. In this paper we give a brief history of the library, an overview of its basic philosophy, a summary of the librarys architecture, and a description of how the Pylearn2 community functions socially.
75 - James Yang 2021
Automatic differentiation is a set of techniques to efficiently and accurately compute the derivative of a function represented by a computer program. Existing C++ libraries for automatic differentiation (e.g. Adept, Stan Math Library), however, exhibit large memory consumptions and runtime performance issues. This paper introduces FastAD, a new C++ template library for automatic differentiation, that overcomes all of these challenges in existing libraries by using vectorization, simpler memory management using a fully expression-template-based design, and other compile-time optimizations to remove some run-time overhead. Benchmarks show that FastAD performs 2-10 times faster than Adept and 2-19 times faster than Stan across various test cases including a few real-world examples.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا