Do you want to publish a course? Click here

Cost-effective Design Options for IsoDAR

186   0   0.0 ( 0 )
 Added by Joshua Spitz
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

This whitepaper reviews design options for the IsoDAR electron antineutrino source. IsoDAR is designed to produce $2.6 times 10^{22}$ electron antineutrinos per year with an average energy of 6.4 MeV, using isotope decay-at-rest. Aspects which must be balanced for cost-effectiveness include: overall cost; rate and energy distribution of the electron antineutrino flux and backgrounds; low technical risk; compactness; simplicity of underground construction and operation; reliability; value to future neutrino physics programs; and value to industry. We show that the baseline design outlined here is the most cost effective.



rate research

Read More

68 - M. Abs , A. Adelmann , J.R Alonso 2015
This conceptual design report describes the technical facility for the IsoDAR electron-antineutrino source at KamLAND. The IsoDAR source will allow an impressive program of neutrino oscillation and electroweak physics to be performed at KamLAND. This report provides information on the physics case, the conceptual design for the subsystems, alternative designs considered, specifics of installation at KamLAND, and identified needs for future development. We discuss the risks we have identified and our approach to mitigating those risks with this design. A substantial portion of the conceptual design is based on three years of experimental efforts and on industry experience. This report also includes information on the conventional facilities.
The design of a primary electron beam facility at CERN is described. The study has been carried out within the framework of the wider Physics Beyond Colliders study. It re-enables the Super Proton Synchrotron (SPS) as an electron accelerator, and leverages the development invested in Compact Linear Collider (CLIC) technology for its injector and as an accelerator research and development infrastructure. The facility would be relevant for several of the key priorities in the 2020 update of the European Strategy for Particle Physics, such as an electron-positron Higgs factory, accelerator R&D, dark sector physics, and neutrino physics. In addition, it could serve experiments in nuclear physics. The electron beam delivered by this facility would provide access to light dark matter production significantly beyond the targets predicted by a thermal dark matter origin, and for natures of dark matter particles that are not accessible by direct detection experiments. It would also enable electro-nuclear measurements crucial for precise modelling the energy dependence of neutrino-nucleus interactions, which is needed to precisely measure neutrino oscillations as a function of energy. The implementation of the facility is the natural next step in the development of X-band high-gradient acceleration technology, a key technology for compact and cost-effective electron/positron linacs. It would also become the only facility with multi-GeV drive bunches and truly independent electron witness bunches for plasma wakefield acceleration. A second phase capable to deliver positron witness bunches would make it a complete facility for plasma wakefield collider studies. [...]
Federated learning (FL) is a distributed learning paradigm that enables a large number of devices to collaboratively learn a model without sharing their raw data. Despite its practical efficiency and effectiveness, the iterative on-device learning process incurs a considerable cost in terms of learning time and energy consumption, which depends crucially on the number of selected clients and the number of local iterations in each training round. In this paper, we analyze how to design adaptive FL that optimally chooses these essential control variables to minimize the total cost while ensuring convergence. Theoretically, we analytically establish the relationship between the total cost and the control variables with the convergence upper bound. To efficiently solve the cost minimization problem, we develop a low-cost sampling-based algorithm to learn the convergence related unknown parameters. We derive important solution properties that effectively identify the design principles for different metric preferences. Practically, we evaluate our theoretical results both in a simulated environment and on a hardware prototype. Experimental evidence verifies our derived properties and demonstrates that our proposed solution achieves near-optimal performance for various datasets, different machine learning models, and heterogeneous system settings.
403 - Sergei Nagaitsev 2018
The present Fermilab proton Booster is an early example of a rapidly-cycling synchrotron (RCS). Built in the 1960s, it features a design in which the combined-function dipole magnets serve as vacuum chambers. Such a design is quite cost-effective, and it does not have the limitations associated with the eddy currents in a metallic vacuum chamber. However, an important drawback of that design is a high impedance, as seen by a beam, because of the magnet laminations. More recent RCS designs (e.g. J-PARC) employ large and complex ceramic vacuum chambers in order to mitigate the eddy current effects and to shield the beam from the magnet laminations. Such a design, albeit very successful, is quite costly because it requires large-bore magnets and large-bore RF cavities. In this article, we will consider an RCS concept with a thin-wall metallic vacuum chamber as a compromise between the chamber-less Fermilab Booster design and the large-bore design with ceramic chambers.
An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new acoustic instrument for the real-time measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10-3 for C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture and anaesthesia.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا