Do you want to publish a course? Click here

A microfabricated ion trap with integrated microwave circuitry

260   0   0.0 ( 0 )
 Added by David Allcock TC
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised to give a large microwave field gradient to allow state-dependent manipulation of the ions motional degrees of freedom, the key to multiqubit entanglement. The microwave field near the centre of the trap is characterised by driving hyperfine transitions in a single laser-cooled 43Ca+ ion.



rate research

Read More

State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with $^{40}$Ca$^+$ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with $^{171}$Yb$^+$ ions in a second BGA trap.
We present the design, construction and characterization of an experimental system capable of supporting a broad class of quantum simulation experiments with hundreds of spin qubits using Be-9 ions in a Penning trap. This article provides a detailed overview of the core optical and trapping subsystems, and their integration. We begin with a description of a dual-trap design separating loading and experimental zones and associated vacuum infrastructure design. The experimental-zone trap electrodes are designed for wide-angle optical access (e.g. for lasers used to engineer spin-motional coupling across large ion crystals) while simultaneously providing a harmonic trapping potential. We describe a near-zero-loss liquid-cryogen-based superconducting magnet, employed in both trapping and establishing a quantization field for ion spin-states, and equipped with a dual-stage remote-motor LN2LHe recondenser. Experimental measurements using a nuclear magnetic resonance (NMR) probe demonstrate part-per-million homogeneity over 7 mm-diameter cylindrical volume, with no discernible effect on the measured NMR linewidth from pulse-tube operation. Next we describe a custom-engineered inbore optomechanical system which delivers ultraviolet (UV) laser light to the trap, and supports multiple aligned optical objectives for top- and sideview imaging in the experimental trap region. We describe design choices including the use of non-magnetic goniometers and translation stages for precision alignment. Further, the optomechanical system integrates UV-compatible fiber optics which decouple the systems alignment from remote light sources. Using this system we present site-resolved images of ion crystals and demonstrate the ability to realize both planar and three-dimensional ion arrays via control of rotating wall electrodes and radial laser beams. Looking to future work, we include interferometric..
One of the outstanding challenges for ion trap quantum information processing is to accurately detect the states of many ions in a scalable fashion. In the particular case of surface traps, geometric constraints make imaging perpendicular to the surface appealing for light collection at multiple locations with minimal cross-talk. In this report we describe an experiment integrating Diffractive Optic Elements (DOEs) with surface electrode traps, connected through in-vacuum multi-mode fibers. The square DOEs reported here were all designed with solid angle collection efficiencies of 3.58%; with all losses included a detection efficiency of 0.388% (1.02% excluding the PMT loss) was measured with a single Ca+ ion. The presence of the DOE had minimal effect on the stability of the ion, both in temporal variation of stray electric fields and in motional heating rates.
In this article we describe the design, construction and implementation of our ion-atom hybrid system incorporating a high resolution time of flight mass spectrometer (TOFMS). Potassium atoms ($^{39}$K) in a Magneto Optical Trap (MOT) and laser cooled calcium ions ($^{40}$Ca$^+$) in a linear Paul trap are spatially overlapped and the combined trap is integrated with a TOFMS for radial extraction and detection of reaction products. We also present some experimental results showing interactions between $^{39}$K$^+$ and $^{39}$K, $^{40}$Ca$^+$ and $^{39}$K$^+$ as well as $^{40}$Ca$^+$ and $^{39}$K pairs. Finally, we discuss prospects for cooling CaH$^+$ molecular ions in the hybrid ion-atom system.
The prospect of building a quantum information processor underlies many recent advances ion trap fabrication techniques. Potentially, a quantum computer could be constructed from a large array of interconnected ion traps. We report on a micrometer-scale ion trap, fabricated from bulk silicon using micro-electromechanical systems (MEMS) techniques. The trap geometry is relatively simple in that the electrodes lie in a single plane beneath the ions. In such a trap we confine laser-cooled 24Mg+ ions approximately 40 microns above the surface. The fabrication technique and planar electrode geometry together make this approach amenable to scaling up to large trap arrays. In addition we observe that little laser cooling light is scattered by the electrodes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا