Do you want to publish a course? Click here

Universal Disorder in Bi2Sr2CaCu2O8+x

122   0   0.0 ( 0 )
 Added by Jacob Alldredge
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cuprates contain a range of nanoscale phenomena that consist of both LDOS(E) features and spatial excitations. Many of these phenomena can only be observed through the use of a SI-STM and their disorder can be mapped out through the fitting of a phenomenological model to the LDOS(E). We present a study of the nanometer scale disorder of single crystal cryogenically cleaved samples of Bi2Sr2CaCu2O8+x whose dopings range from p = 0.19 to 0.06. The phenomenological model used is the Tripartite model that has been successfully applied to the average LDOS(E) previously. The resulting energy scale maps show a structured patchwork disorder of three energy scales, which can be described by a single underlying disordered parameter. This spatial disorder structure is universal for all dopings and energy scales. It is independent of the oxygen dopant negative energy resonances and the interface between the different patches takes the form of a shortened lifetime pseudogap/superconducting gap state. The relationship between the energy scales and the spatial modulations of the dispersive QPI, static q1* modulation and the pseudogap shows that the energy scales signatures in the LDOS(E) are tied to the onset and termination of the spatial excitations. The static q1* modulations local energy range is measured and its signature in the LDOS(E) is the kink, whose number of states are modulated with a wave vector of q1*. This analysis of both the LDOS(r,E) and the spatial modulations in q-space show a picture of a single underlying disordered parameter that determines both the LDOS(E) structure as well as the energy ranges of the QPI, q1* modulation and the pseudogap states. This parameter for a single patch can be defined by the Fermi surface crossing of the parent compound anti-ferromagnetic zone boundary for a model homogeneous superconductor with the same electronic properties as the patch.



rate research

Read More

We demonstrate a general, computer automated procedure that inverts the q-space scattering data measured by spectroscopic imaging scanning tunneling microscopy (SI-STM) to determine the k-space scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x. This new method allows the measurements of the differences between the positive and negative energy dispersions, the gap structure and it also measures energy dependent scattering length scale. Furthermore, the transitions between the dispersive QPI, the checkerboard and the pseudogap are mapped in detail allowing the exact nature of these transitions to be determined for both positive and negative energies. We are also able to measure the k-space scattering structure over a wide range of doping (p ~ 0.22 to 0.08), including regions where the octet model is not applicable. Our technique allows a complete picture of the k-space origins of the spatial excitations in Bi2Sr2CaCu2O8+x to be mapped out, providing for better comparisons between SI-STM and other experimental probes of the band structure and validating our new general approach for determining the k-space scattering origins from SI-STM data.
113 - Yazhou Zhou , Jing Guo , Shu Cai 2020
Copper oxide superconductors have continually fascinated the communities of condensed matter physics and material sciences because they host the highest ambient-pressure superconducting transition temperature (Tc) and mysterious physics. Searching for the universal correlation between the superconducting state and its normal state or neighboring ground state is believed to be an effective way for finding clues to elucidate the underlying mechanism of the superconductivity. One of the common pictures for the copper oxide superconductors is that a well-behaved metallic phase will present after the superconductivity is entirely suppressed by chemical doping or application of the magnetic field. Here, we report a different observation of universal quantum transition from superconducting state to insulating-like state under pressure in the under-, optimally- and over-doped Bi2212 superconductors with two CuO2 planes in a unit cell. The same phenomenon has been also found in the Bi2201 superconductor with one CuO2 plane and the Bi2223 superconductor with three CuO2 planes in a unit cell. These results not only provide fresh information but also pose a new challenge for achieving a unified understanding on the underlying physics of the high-Tc superconductivity.
In this paper, we review some of our ARPES results on the superconducting and pseudo gaps in Bi2Sr2CaCu2O8+x. We find that optimally and overdoped samples exhibit a d-wave gap, which closes at the same temperature, Tc, for all k points. In underdoped samples, a leading edge gap is found up to a temperature T* > Tc. We find that T* scales with the maximum low temperature gap, increasing as the doping is reduced. The momentum dependence of the pseudogap is similar to that of the superconducting gap; however, the pseudogap closes at different temperatures for different k points.
Scanning tunneling spectroscopy of the high-Tc superconductor Bi2Sr2CaCu2O8+d reveals weak, incommensurate, spatial modulations in the tunneling conductance. Images of these energy-dependent modulations are Fourier analyzed to yield the dispersion of their wavevectors. Comparison of the dispersions with photoemission spectroscopy data indicates that quasiparticle interference, due to elastic scattering between characteristic regions of momentum-space, provides a consistent explanation for the conductance modulations, without appeal to another order parameter. These results refocus attention on quasiparticle scattering processes as potential explanations for other incommensurate phenomena in the cuprates. The momentum-resolved tunneling spectroscopy demonstrated here also provides a new technique with which to study quasiparticles in correlated materials.
161 - Jie Yong , M. Hinton , A. McCray 2011
Due to their proximity to an antiferromagnetic phase and to the mysterious pseudogap, underdoped cuprates have attracted great interest in the high Tc community for many years. A central issue concerns the role of quantum and thermal fluctuations of the phase of the superconducting order parameter. The evolution of superfluid density ns with temperature and doping is a powerful probe of this physics. Here, we report superfluid density measurements on underdoped Bi2Sr2CaCu2O8+x (Bi-2212) films at much lower dopings than have been achieved previously, and with excellent control on doping level - Tc ranges from Tc,min ~ 6K to Tc,max ~ 80K in steps of about 5K. Most famous studies on Bi-2212 like angle-resolved photoemission and scanning probe microscopy are surface-sensitive while superfluid density measurements are bulk-sensitive. We find that strong two-dimensional quantum fluctuations are evident in the observed linear scaling of Tc with ns(0) when Tc is below about 45 K, which contrasts with three-dimensional quantum fluctuations evident in the square root scaling, Tc $propto sqrt$ns(0), seen in the much less anisotropic cuprate, YBa2Cu3O7 (YBCO). On the other hand, consistent with YBCO, ns(T) in severely underdoped Bi-2212 loses its strong downward curvature near Tc, becoming quasi-linear without any obvious critical behavior near Tc. We argue that the quasi-linear T dependence arises from thermal phase fluctuations, although the current theory needs modification in order to understand some features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا