Do you want to publish a course? Click here

Effect of back-gate on contact resistance and on channel conductance in graphene-based field-effect transistors

161   0   0.0 ( 0 )
 Added by Filippo Giubileo Dr
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the contact resistance and the transfer characteristics of back-gated field effect transistors of mono- and bi-layer graphene. We measure specific contact resistivity of ~7kohm*um2 and ~30kohm*um2 for Ni and Ti, respectively. We show that the contact resistance is a significant contributor to the total source-to-drain resistance and it is modulated by the back-gate voltage. We measure transfer characteristics showing double dip feature that we explain as the effect of doping due to charge transfer from the contacts causing minimum density of states for graphene under the contacts and in the channel at different gate voltage.



rate research

Read More

The extremely high carrier mobility and the unique band structure, make graphene very useful for field-effect transistor applications. According to several works, the primary limitation to graphene based transistor performance is not related to the material quality, but to extrinsic factors that affect the electronic transport properties. One of the most important parasitic element is the contact resistance appearing between graphene and the metal electrodes functioning as the source and the drain. Ohmic contacts to graphene, with low contact resistances, are necessary for injection and extraction of majority charge carriers to prevent transistor parameter fluctuations caused by variations of the contact resistance. The International Technology Roadmap for Semiconductors, toward integration and down-scaling of graphene electronic devices, identifies as a challenge the development of a CMOS compatible process that enables reproducible formation of low contact resistance. However, the contact resistance is still not well understood despite it is a crucial barrier towards further improvements. In this paper, we review the experimental and theoretical activity that in the last decade has been focusing on the reduction of the contact resistance in graphene transistors. We will summarize the specific properties of graphene-metal contacts with particular attention to the nature of metals, impact of fabrication process, Fermi level pinning, interface modifications induced through surface processes, charge transport mechanism, and edge contact formation.
Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve.
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based transistors, reduces the importance of the specifics of the chemical bonding to the metallic electrodes in favor of the carbon-based part of device. The ultimate performance limits are here studied for various constriction and metal-ribbon contact models. In particular we show that, even for poorly contacting metals, properly taylored constrictions can give promising values for both the on-conductance and the subthreshold swing.
The application of imaging techniques based on ensembles of nitrogen-vacancy (NV) sensors in diamond to characterise electrical devices has been proposed, but the compatibility of NV sensing with operational gated devices remains largely unexplored. Here we fabricate graphene field-effect transistors (GFETs) directly on the diamond surface and characterise them via NV microscopy. The current density within the gated graphene is reconstructed from NV magnetometry under both mostly p- and n-type doping, but the exact doping level is found to be affected by the measurements. Additionally, we observe a surprisingly large modulation of the electric field at the diamond surface under an applied gate potential, seen in NV photoluminescence and NV electrometry measurements, suggesting a complex electrostatic response of the oxide-graphene-diamond structure. Possible solutions to mitigate these effects are discussed.
95 - S. Krompiewski 2002
Effect of contact interfaces, between metallic single-wall carbon nanotubes (SWCNT) and external electrodes made also of nanotubes, on the electrical conductance is studied. A tight-binding model with both diagonal and off-diagonal disorder, a recursive Green function technique as well as the Landauer formalism are used. The studies are carried out within the coherent transport regime and are focused on: (i) evolution from conductance quantization to resonant tunneling, (ii) SWCNTs length effects and (iii) magnetoresistance. It is shown that the so-called on-resonance devices, i.e. nanotubes having a conductance peak at the Fermi energy, occur with a period of 3 carbon inter-ring spacings. Additionally, the present approach provides an insight into magnetoresistance dependence of SWCNTs on conditions at the contact interface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا