Do you want to publish a course? Click here

The Implications of Discontinuities for Testing Theories of Turbulence in the Solar Wind

224   0   0.0 ( 0 )
 Added by Andrew Turner Mr
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In-situ observations of magnetic field fluctuations in the solar wind show a broad continuum in the power spectral density (PSD) with a power-law range of scaling often identified as an inertial range of magnetohydrodynamic turbulence. However, both turbulence and discontinuities are present in the solar wind on these inertial range of scales. We identify and remove these discontinuities using a method which for the first time does not impose a characteristic scale on the resultant time-series. The PSD of vector field fluctuations obtained from at-a point observations is a tensor that can in principle be anisotropic with scaling exponents that depend on background field and flow direction. This provides a key test of theories of turbulence. We find that the removal of discontinuities from the observed time-series can significantly alter the PSD trace anisotropy. It becomes quasi-isotropic, in that the observed exponent does not vary with the background field angle once the discontinuities are removed. This is consistent with the predictions of the Iroshnikov-Kraichnan model of turbulence. As a consistency check we construct a surrogate time-series from the observations that is composed solely of discontinuities. The surrogate provides an estimate of the PSD due solely to discontinuities and this provides the effective noise-floor produced by discontinuities for all scales greater than a few ion-cyclotron scales.



rate research

Read More

A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, $mathbf{B}$, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in $mathbf{B}$, we find 87%-92% of reconnection exhausts and $sim$9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.
Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvenic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies. It is found that Alfvenic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.
We investigate the anisotropy of Alfvenic turbulence in the inertial range of slow solar wind and in both driven and decaying reduced magnetohydrodynamic simulations. A direct comparison is made by measuring the anisotropic second-order structure functions in both data sets. In the solar wind, the perpendicular spectral index of the magnetic field is close to -5/3. In the forced simulation, it is close to -5/3 for the velocity and -3/2 for the magnetic field. In the decaying simulation, it is -5/3 for both fields. The spectral index becomes steeper at small angles to the local magnetic field direction in all cases. We also show that when using the global rather than local mean field, the anisotropic scaling of the simulations cannot always be properly measured.
257 - R. A. Treumann , W. Baumjohann , 2018
A model-independent first-principle first-order investigation of the shape of turbulent density-power spectra in the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion-inertial range of quasi-neutral plasmas respond to Kolmogorov (K) or Iroshnikov-Kraichnan (IK) inertial-range velocity turbulence power spectra via the spectrum of the velocity-turbulence-related random-mean-square induction-electric field. Maintenance of electrical quasi-neutrality by the ions causes deformations in the power spectral density of the turbulent density fluctuations. Kolmogorov inertial range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed scale-limited bumps in the density-power spectrum may be traced back to the electric ion response. Magnetic power spectra react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents and is restricted to the ion-inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion-inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in this process to which spectral advection turns out to be secondary but may become observable under special external conditions. One such case observed by WIND is analysed. We discuss various aspects of this effect including the affected wavenumber scale range, dependence on angle between mean flow velocity and wavenumber and, for a radially expanding solar wind flow when assuming adiabatic expansion at fast solar wind speeds and a Parker dependence of the solar wind magnetic field on radius, also the presumable limitations on the radial location of the turbulent source region.
Using the novel Magnetospheric Multiscale (MMS) mission data accumulated during the 2019 MMS Solar Wind Turbulence Campaign, we calculate the Taylor microscale $(lambda_{mathrm{T}})$ of the turbulent magnetic field in the solar wind. The Taylor microscale represents the onset of dissipative processes in classical turbulence theory. An accurate estimation of Taylor scale from spacecraft data is, however, usually difficult due to low time cadence, the effect of time decorrelation, and other factors. Previous reports were based either entirely on the Taylor frozen-in approximation, which conflates time dependence, or that were obtained using multiple datasets, which introduces sample-to-sample variation of plasma parameters, or where inter-spacecraft distance were larger than the present study. The unique configuration of linear formation with logarithmic spacing of the 4 MMS spacecraft, during the campaign, enables a direct evaluation of the $lambda_{mathrm{T}}$ from a single dataset, independent of the Taylor frozen-in approximation. A value of $lambda_{mathrm{T}} approx 7000 , mathrm{km}$ is obtained, which is about 3 times larger than the previous estimates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا