Do you want to publish a course? Click here

Direct Measurement of the Solar-Wind Taylor Microscale using MMS Turbulence Campaign Data

169   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the novel Magnetospheric Multiscale (MMS) mission data accumulated during the 2019 MMS Solar Wind Turbulence Campaign, we calculate the Taylor microscale $(lambda_{mathrm{T}})$ of the turbulent magnetic field in the solar wind. The Taylor microscale represents the onset of dissipative processes in classical turbulence theory. An accurate estimation of Taylor scale from spacecraft data is, however, usually difficult due to low time cadence, the effect of time decorrelation, and other factors. Previous reports were based either entirely on the Taylor frozen-in approximation, which conflates time dependence, or that were obtained using multiple datasets, which introduces sample-to-sample variation of plasma parameters, or where inter-spacecraft distance were larger than the present study. The unique configuration of linear formation with logarithmic spacing of the 4 MMS spacecraft, during the campaign, enables a direct evaluation of the $lambda_{mathrm{T}}$ from a single dataset, independent of the Taylor frozen-in approximation. A value of $lambda_{mathrm{T}} approx 7000 , mathrm{km}$ is obtained, which is about 3 times larger than the previous estimates.



rate research

Read More

Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvenic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies. It is found that Alfvenic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.
Studies of solar wind turbulence traditionally employ high-resolution magnetic field data, but high-resolution measurements of ion and electron moments have been possible only recently. We report the first turbulence studies of ion and electron velocity moments accumulated in pristine solar wind by the Fast Particle Investigation instrument onboard the Magnetospheric Multiscale (MMS) Mission. Use of these data is made possible by a novel implementation of a frequency domain Hampel filter, described herein. After presenting procedures for processing of the data, we discuss statistical properties of solar wind turbulence extending into the kinetic range. Magnetic field fluctuations dominate electron and ion velocity fluctuation spectra throughout the energy-containing and inertial ranges. However, a multi-spacecraft analysis indicates that at scales shorter than the ion-inertial length, electron velocity fluctuations become larger than ion velocity and magnetic field fluctuations. The kurtosis of ion velocity peaks around few ion-inertial lengths and returns to near gaussian value at sub-ion scales.
257 - R. A. Treumann , W. Baumjohann , 2018
A model-independent first-principle first-order investigation of the shape of turbulent density-power spectra in the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion-inertial range of quasi-neutral plasmas respond to Kolmogorov (K) or Iroshnikov-Kraichnan (IK) inertial-range velocity turbulence power spectra via the spectrum of the velocity-turbulence-related random-mean-square induction-electric field. Maintenance of electrical quasi-neutrality by the ions causes deformations in the power spectral density of the turbulent density fluctuations. Kolmogorov inertial range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed scale-limited bumps in the density-power spectrum may be traced back to the electric ion response. Magnetic power spectra react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents and is restricted to the ion-inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion-inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in this process to which spectral advection turns out to be secondary but may become observable under special external conditions. One such case observed by WIND is analysed. We discuss various aspects of this effect including the affected wavenumber scale range, dependence on angle between mean flow velocity and wavenumber and, for a radially expanding solar wind flow when assuming adiabatic expansion at fast solar wind speeds and a Parker dependence of the solar wind magnetic field on radius, also the presumable limitations on the radial location of the turbulent source region.
Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is $sim 10^{3}, mathrm{J,kg^{-1},s^{-1}}$, an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe (PSP), even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in-situ observations. Using the Politano-Pouquet third-order law and the von Karman decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance $R$ ranging from $54,R_{odot}$ (0.25 au) to $36,R_{odot}$ (0.17 au). The energy transfer rate obtained near the first perihelion is about 100 times higher than the average value at 1 au. This dramatic increase in the heating rate is unprecedented in previous solar wind observations, including those from Helios, and the values are close to those obtained in the shocked plasma inside the terrestrial magnetosheath.
446 - G. Q. Zhao , Y. Lin , X. Y. Wang 2020
Based on in-situ measurements by Wind spacecraft from 2005 to 2015, this letter reports for the first time a clearly scale-dependent connection between proton temperatures and the turbulence in the solar wind. A statistical analysis of proton-scale turbulence shows that increasing helicity magnitudes correspond to steeper magnetic energy spectra. In particular, there exists a positive power-law correlation (with a slope $sim 0.4$) between the proton perpendicular temperature and the turbulent magnetic energy at scales $0.3 lesssim krho_p lesssim 1$, with $k$ being the wavenumber and $rho_p$ being the proton gyroradius. These findings present evidence of solar wind heating by the proton-scale turbulence. They also provide insight and observational constraint on the physics of turbulent dissipation in the solar wind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا