Do you want to publish a course? Click here

Independent sets in graphs with given minimum degree

137   0   0.0 ( 0 )
 Added by Hiu-Fai Law
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We consider numbers and sizes of independent sets in graphs with minimum degree at least $d$, when the number $n$ of vertices is large. In particular we investigate which of these graphs yield the maximum numbers of independent sets of different sizes, and which yield the largest random independent sets. We establish a strengthened form of a conjecture of Galvin concerning the first of these topics.



rate research

Read More

151 - Yue Ma , Xinmin Hou , Jun Gao 2021
Given a graph $G$, let $f_{G}(n,m)$ be the minimal number $k$ such that every $k$ independent $n$-sets in $G$ have a rainbow $m$-set. Let $mathcal{D}(2)$ be the family of all graphs with maximum degree at most two. Aharoni et al. (2019) conjectured that (i) $f_G(n,n-1)=n-1$ for all graphs $Ginmathcal{D}(2)$ and (ii) $f_{C_t}(n,n)=n$ for $tge 2n+1$. Lv and Lu (2020) showed that the conjecture (ii) holds when $t=2n+1$. In this article, we show that the conjecture (ii) holds for $tgefrac{1}{3}n^2+frac{44}{9}n$. Let $C_t$ be a cycle of length $t$ with vertices being arranged in a clockwise order. An ordered set $I=(a_1,a_2,ldots,a_n)$ on $C_t$ is called a $2$-jump independent $n$-set of $C_t$ if $a_{i+1}-a_i=2pmod{t}$ for any $1le ile n-1$. We also show that a collection of 2-jump independent $n$-sets $mathcal{F}$ of $C_t$ with $|mathcal{F}|=n$ admits a rainbow independent $n$-set, i.e. (ii) holds if we restrict $mathcal{F}$ on the family of 2-jump independent $n$-sets. Moreover, we prove that if the conjecture (ii) holds, then (i) holds for all graphs $Ginmathcal{D}(2)$ with $c_e(G)le 4$, where $c_e(G)$ is the number of components of $G$ isomorphic to cycles of even lengths.
189 - Ewan Davies , Will Perkins 2021
We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density $alpha_c(Delta)$ and provide (i) for $alpha < alpha_c(Delta)$ randomized polynomial-time algorithms for approximately sampling and counting independent sets of given size at most $alpha n$ in $n$-vertex graphs of maximum degree $Delta$; and (ii) a proof that unless NP=RP, no such algorithms exist for $alpha>alpha_c(Delta)$. The critical density is the occupancy fraction of hard core model on the clique $K_{Delta+1}$ at the uniqueness threshold on the infinite $Delta$-regular tree, giving $alpha_c(Delta)simfrac{e}{1+e}frac{1}{Delta}$ as $Deltatoinfty$.
The degree-based entropy of a graph is defined as the Shannon entropy based on the information functional that associates the vertices of the graph with the corresponding degrees. In this paper, we study extremal problems of finding the graphs attaining the minimum degree-based graph entropy among graphs and bipartite graphs with a given number of vertices and edges. We characterize the unique extremal graph achieving the minimum value among graphs with a given number of vertices and edges and present a lower bound for the degree-based entropy of bipartite graphs and characterize all the extremal graphs which achieve the lower bound. This implies the known result due to Cao et al. (2014) that the star attains the minimum value of the degree-based entropy among trees with a given number of vertices.
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ if and only if $G$ contains no overfull subgraph. The 1-factorization conjecture is a special case of this overfull conjecture, which states that for even $n$, every regular $n$-vertex graph with degree at least about $n/2$ has a 1-factorization and was confirmed for large graphs in 2014. Supporting the overfull conjecture as well as generalizing the 1-factorization conjecture in an asymptotic way, in this paper, we show that for any given $0<varepsilon <1$, there exists a positive integer $n_0$ such that the following statement holds: if $G$ is a graph on $2nge n_0$ vertices with minimum degree at least $(1+varepsilon)n$, then $G$ has chromatic index $Delta(G)$ if and only if $G$ contains no overfull subgraph.
The weight of a subgraph $H$ in $G$ is the sum of the degrees in $G$ of vertices of $H$. The {em height} of a subgraph $H$ in $G$ is the maximum degree of vertices of $H$ in $G$. A star in a given graph is minor if its center has degree at most five in the given graph. Lebesgue (1940) gave an approximate description of minor $5$-stars in the class of normal plane maps with minimum degree five. In this paper, we give two descriptions of minor $5$-stars in plane graphs with minimum degree five. By these descriptions, we can extend several results and give some new results on the weight and height for some special plane graphs with minimum degree five.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا