Do you want to publish a course? Click here

Old and New No Go Theorems on Interacting Massless Particles in Flat Space

280   0   0.0 ( 0 )
 Added by Massimo Porrati
 Publication date 2012
  fields
and research's language is English
 Authors M. Porrati




Ask ChatGPT about the research

We review model independent arguments showing that massless particles interacting with gravity in a Minkowski background space can have at most spin two. These arguments include a classic theorem due to Weinberg, as well as a more recent extension of the Weinberg-Witten theorem. A puzzle arising from an apparent counterexample to these theorems is examined and resolved.



rate research

Read More

There are various no-go results forbidding self-interactions for a single partially massless spin-2 field. Given the photon-like structure of the linear partially massless field, it is natural to ask whether a multiplet of such fields can interact under an internal Yang-Mills like extension of the partially massless symmetry. We give two arguments that such a partially massless Yang-Mills theory does not exist. The first is that there is no Yang-Mills like non-abelian deformation of the partially massless symmetry, and the second is that cubic vertices with the appropriate structure constants do not exist.
We consider brane world models with one extra dimension. In the bulk there is in addition to gravity a three form gauge potential or equivalently a scalar (by generalisation of electric magnetic duality). We find classical solutions for which the 4d effective cosmological constant is adjusted by choice of integration constants. No go theorems for such self-tuning mechanism are circumvented by unorthodox Lagrangians for the three form respectively the scalar. It is argued that the corresponding effective 4d theory always includes tachyonic Kaluza-Klein excitations or ghosts. Known no go theorems are extended to a general class of models with unorthodox Lagrangians.
109 - Andreas Blass 2015
No-go theorems assert that hidden-variable theories, subject to appropriate hypotheses, cannot reproduce the predictions of quantum theory. We examine two species of such theorems, value no-go theorems and expectation no-go theorems. The former assert that hidden-variables cannot match the predictions of quantum theory about the possible values resulting from measurements; the latter assert that hidden-variables cannot match the predictions of quantum theory about the expectation values of measurements. We sharpen the known results of both species, which allows us to clarify the similarities and differences between the two species. We also repair some flaws in existing definitions and proofs.
57 - R. Roiban , A.A. Tseytlin 2017
We consider the minimal interacting theory of a single tower of spin j=0,2,4,... massless Fronsdal fields in flat space for which consistent covariant cubic interaction vertices are known. We address the question of constraints on possible quartic interaction vertices imposed by the condition of on-shell gauge invariance of the tree-level four-point scattering amplitudes involving three spin 0 and one spin j particle. We find that these constraints admit a local solution for quartic 000j interaction term in the action only for j=2 and j=4. We determine the non-local terms in four-vertices required in the case of spin j greater than 4 and show that these non-localities can be interpreted as a result of integrating out a tower of auxiliary ghost-like massless higher spin fields in an extended theory with a local action. We also consider the conformal off-shell extension of the Einstein theory and show that its perturbative expansion is the same as of the the non-local action resulting from integrating out the trace of the graviton field from the Einstein action. Motivated by this example, we conjecture the existence of a similar conformal off-shell extension of a massless higher spin theory that may be related to the above extended theory and may have the same infinite-dimensional symmetry as the conformal higher spin theory and thus may lead to a trivial S matrix.
75 - F.A. Berends , W.T. Giele 1997
In this paper the general form of scattering amplitudes for massless particles with equal spins s ($s s to s s$) or unequal spins ($s_a s_b to s_a s_b$) are derived. The imposed conditions are that the amplitudes should have the lowest possible dimension, have propagators of dimension $m^{-2}$, and obey gauge invariance. It is shown that the number of momenta required for amplitudes involving particles with s > 2 is higher than the number implied by 3-vertices for higher spin particles derived in the literature. Therefore, the dimension of the coupling constants following from the latter 3-vertices has a smaller power of an inverse mass than our results imply. Consequently, the 3-vertices in the literature cannot be the first interaction terms of a gauge-invariant theory. When no spins s > 2 are present in the process the known QCD, QED or (super) gravity amplitudes are obtained from the above general amplitudes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا