Do you want to publish a course? Click here

High Resolution BPM Upgrade for the ATF Damping Ring at KEK

268   0   0.0 ( 0 )
 Added by Eddy, Nathan
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented.



rate research

Read More

129 - K.L.F. Bane , T. Naito , T. Okugi 2001
We present energy spread and bunch length measurements at the Accelerator Test Facility (ATF) at KEK, as functions of current, for different ring rf voltages, and with the beam both on and off the coupling resonance. We fit the on-coupling bunch shapes to those of an impedance model consisting of a resistor and an inductor connected in series. We find that the fits are reasonably good, but that the resulting impedance is unexpectedly large.
229 - K.L.F. Bane 2002
We derive a simple relation for estimating the relative emittance growth in x and y due to intrabeam scattering (IBS) in electron storage rings. We show that IBS calculations for the ATF damping ring, when using the formalism of Bjorken-Mtingwa, a modified formalism of Piwinski (where eta squared divided by beta has been replaced by the dispersion invariant), or a simple high-energy approximate formula all give results that agree well. Comparing theory, including the effect of potential well bunch lengthening, with a complete set of ATF steady-state beam size vs. current measurements we find reasonably good agreement for energy spread and horizontal emittance. The measured vertical emittance, however, is larger than theory in both offset (zero current emittance) and slope (emittance change with current). The slope error indicates measurement error and/or additional current-dependent physics at the ATF; the offset error, that the assumed Coulomb log is correct to within a factor of 1.75.
Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of $e^-$ -- $e^+$ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-Perot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed. Possible methods to observe the effect of Compton scattering on the ATF beam are proposed.
IP-BPM (Interaction Point Beam Position Monitor) is an ultra high resolution cavity BPM to be used at ATF2, a test facility for ILC final focus system. Control of beam position in 2 nm precision is required for ATF2. Beam tests at ATF extraction line proved a 8.7 nm position resolution.
78 - R. Yang , T. Naito , S. Bai 2018
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrates the influence of the beam-gas scattering process on the transverse halo distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا