Do you want to publish a course? Click here

On the slope of fourgonal semistable fibrations

124   0   0.0 ( 0 )
 Added by Beorchia Valentina
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We bound the slope of sweeping curves in the fourgonal locus of the moduli space of genus g algebraic curves. Our results follow from some Bogomolov-type inequalities for weakly positive rank two vector bundles on ruled surfaces.



rate research

Read More

164 - Adrian Langer 2021
We give a new simple proof of boundedness of the family of semistable sheaves with fixed numerical invariants on a fixed smooth projective variety. In characteristic zero our method gives a quick proof of Bogomolovs inequality for semistable sheaves on a smooth projective variety of any dimension $ge 2$ without using any restriction theorems.
We investigate degenerations of syzygy bundles on plane curves over $p$-adic fields. We use Mustafin varieties which are degenerations of projective spaces to find a large family of models of plane curves over the ring of integers such that the special fiber consists of multiple projective lines meeting in one point. On such models we investigate vector bundles whose generic fiber is a syzygy bundle and which become trivial when restricted to each projective line in the special fiber. Hence these syzygy bundles have strongly semistable reduction. This investigation is motivated by the fundamental open problem in $p$-adic Simpson theory to determine the category of Higgs bundles corresponding to continuous representations of the etale fundamental group of a curve. Faltings $p$-adic Simpson correspondence and work of Deninger and the second author shows that bundles with Higgs field zero and potentially strongly semistable reduction fall into this category. Hence the results in the present paper determine a class of syzygy bundles on plane curves giving rise to a $p$-adic local system. We apply our methods to a concrete example on the Fermat curve suggested by Brenner and prove that this bundle has potentially strongly semistable reduction.
135 - Yijie Lin 2020
We generalize the construction of a moduli space of semistable pairs parametrizing isomorphism classes of morphisms from a fixed coherent sheaf to any sheaf with fixed Hilbert polynomial under a notion of stability to the case of projective Deligne-Mumford stacks. We study the deformation and obstruction theories of stable pairs, and then prove the existence of virtual fundamental classes for some cases of dimension two and three. This leads to a definition of Pandharipande-Thomas invariants on three-dimensional smooth projective Deligne-Mumford stacks.
192 - Jinsong Xu 2016
We prove a structure theorem for the Albanese maps of varieties with Q-linearly trivial log canonical divisors. Our start point is the action of a nonlinear algebraic group on a projective variety.
122 - Takeru Fukuoka 2016
By Jahnke-Peternell-Radloff and Takeuchi, almost Fano threefolds with del Pezzo fibrations were classified. Among them, there exists 10 classes such that the existence of members of these was not proved. In this paper, we construct such examples belonging to each of 10 classes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا