Do you want to publish a course? Click here

Bistable optical response of nanoparticle heterodimer: Mechanism, phase diagram, and switching time

108   0   0.0 ( 0 )
 Added by Victor Malyshev
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We conduct a theoretical study of the bistable optical response of a nanoparticle heterodimer comprised of a closely spaced semiconductor quantum dot and metal nanoparticle. The bistable nature of the response results from the interplay between the quantum dots optical nonlinearity and its self-action (feedback) originating from the presence of the metal nanoparticle. We show that the feedback is governed by a complex valued coupling parameter $G$. Both the real and imaginary parts of $G$ ($G_mathrm{R}$ and $G_mathrm{I}$) play an important role in the occurrence of bistability, which is manifested in an S-shaped dependence of the quantum dot excited state population on the intensity of the external field, and hysteresis of the population. From our calculations, we find that at $G_mathrm{R} = 0$, the critical value for bistability to occur is $G_mathrm{I} = 8Gamma$, whereas at $G_mathrm{I} = 0$, the critical value of $G_mathrm{R} = 4Gamma$, where $Gamma$ is the polarization dephasing rate. Thus, there exist two different (limiting) mechanisms of bistability, depending on whether $G_mathrm{R}$ is much larger or much smaller than $G_mathrm{I}$. We also calculate the bistability phase diagram within the systems parameter space: spanned by $G_mathrm{R}$, $G_mathrm{I}$ and $Delta$, the latter being the detuning between the driving frequency and the transition frequency of the quantum dot. Additionally, switching times from the lower stable branch to the upper one (and {it vise versa}) are calculated as a function of the intensity of the driving field. We show that the conditions for bistability to occur can be realized, for example, for a heterodimer comprised of a closely spaced CdSe (or CdSe/ZnSe) quantum dot and a gold nanosphere.



rate research

Read More

The use of magnetic nanowires as memory units is made possible by the exponential divergence of the characteristic time for magnetization reversal at low temperature, but the slow relaxation makes the manipulation of the frozen magnetic states difficult. We suggest that finite-size segments can show a fast switching if collective reversal of the spins is taken into account. This mechanism gives rise at low temperatures to a scaling law for the dynamic susceptibility that has been experimentally observed for the dilute molecular chain Co(hfac)2NitPhOMe. These results suggest a possible way of engineering nanowires for fast switching of the magnetization.
Motivated by the nonlinear Hall effect observed in topological semimetals, we studied the photocurrent by the quantum kinetic equation. We recovered the shift current and injection current discovered by Sipe et al., and the nonlinear Hall current induced by Berry curvature dipole (BCD) proposed by Inti Sodemann and Liang Fu. Especially, we further proposed that 3-form tensor can also induce photocurrent, in addition to the Berry curvature and BCD. This work will supplement the existing mechanisms for photocurrent. In contrast to the shift current induced by shift vector, all photocurrents induced by gradient/curl of Berry curvature, and high rank tensor require circularly polarized light and topologically non-trivial band structure, viz. non-vanishing Berry curvature.
In this work, vertical tunnel field-effect transistors (v-TFETs) based on vertically stacked heretojunctions from 2D transition metal dichalcogenide (TMD) materials are studied by atomistic quantum transport simulations. The switching mechanism of v-TFET is found to be different from previous predictions. As a consequence of this switching mechanism, the extension region, where the materials are not stacked over is found to be critical for turning off the v-TFET. This extension region makes the scaling of v-TFETs challenging. In addition, due to the presence of both positive and negative charges inside the channel, v-TFETs also exhibit negative capacitance. As a result, v-TFETs have good energy-delay products and are one of the promising candidates for low power applications.
We report on the manipulation of magnetization by femtosecond laser pulses in a periodic array of cylindrical nickel nanoparticles. By performing experiments at different wavelength, we show that the excitation of collective surface plasmon resonances triggers demagnetization in zero field or magnetic switching in a small perpendicular field. Both magnetic effects are explained by plasmon-induced heating of the nickel nanoparticles to their Curie temperature. Model calculations confirm the strong correlation between the excitation of surface plasmon modes and laser-induced changes in magnetization.
Time-resolved imaging reveals that the helicity dependent all-optical switching (HD-AOS) of Co/Pt ferromagnetic multilayers proceeds by two stages. First one involves the helicity independent and stochastic nucleation of reversed magnetic domains. At the second stage circularly polarized light breaks the degeneracy between the magnetic domains and promotes the preferred direction of domain wall (DW) motion. The growth of the reversed domain from the nucleation cite, for a particular helicity, leads to full magnetic reversal. This study demonstrates a novel mechanism of HD-AOS mediated by the deterministic displacement of DWs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا