Do you want to publish a course? Click here

The Initial Value Problem for Wave Equation and a Poisson-like Integral in Hyperbolic Plane

267   0   0.0 ( 0 )
 Added by Paolo Zampetti
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent time, by working in a plane with the metric associated with wave equation (the Special Relativity non-definite quadratic form), a complete formalization of space-time trigonometry and a Cauchy-like integral formula have been obtained. In this paper the concept that the solution of a mathematical problem is simplified by using a mathematics with the symmetries of the problem, actuates us for studying the wave equation (in particular the initial values problem) in a plane where the geometry is the one generated by the wave equation itself. In this way, following a classical approach, we point out the well known differences with respect to Laplace equation notwithstanding their formal equivalence (partial differential equations of second order with constant coefficients) and also show that the same conditions stated for Laplace equation allow us to find a new solution. In particular taking as initial data for the wave equation an arbitrary function given on an arm of an equilateral hyperbola, a Poisson-like integral formula holds.



rate research

Read More

90 - Anton Pryimak 2018
This paper is a continuation of arXiv:17.01.02867. We give here rigorous solution of the parametrix problem for Toda rarefaction problem and complete asymptotic analysis, justifying the asymptotics obtained in arXiv:17.01.02867.
169 - Dustin Keys , Jan Wehr 2019
The paper studies a class of quantum stochastic differential equations, modeling an interaction of a system with its environment in the quantum noise approximation. The space representing quantum noise is the symmetric Fock space over L^2(R_+). Using the isomorphism of this space with the space of square-integrable functionals of the Poisson process, the equations can be represented as classical stochastic differential equations, driven by Poisson processes. This leads to a discontinuous dynamical state reduction which we compare to the Ghirardi-Rimini-Weber model. A purely quantum object, the norm process, is found which plays the role of an observer (in the sense of Everett [H. Everett III, Reviews of modern physics, 29.3, 454, (1957)]), encoding all events occurring in the system space. An algorithm introduced by Dalibard et al [J. Dalibard, Y. Castin, and K. M{o}lmer, Physical review letters, 68.5, 580 (1992)] to numerically solve quantum master equations is interpreted in the context of unravellings and the trajectories of expected values of system observables are calculated.
We present the fundamental solutions for the spin-1/2 fields propagating in the spacetimes with power type expansion/contraction and the fundamental solution of the Cauchy problem for the Dirac equation. The derivation of these fundamental solutions is based on formulas for the solutions to the generalized Euler-Poisson-Darboux equation, which are obtained by the integral transform approach.
201 - A.S. Fokas , B. Pelloni 2009
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a $2times 2$ matrix Riemann-Hilbert problem formulated in terms of both the Dirichlet and the Neumann boundary values on the boundary of a semistrip. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of the semistrip and constant along the bounded side; in this particular case we show that the jump matrices of the above Riemann-Hilbert problem can be expressed explicitly in terms of the width of the semistrip and the constant value of the solution along the bounded side. This Riemann-Hilbert problem has a unique solution.
In the present manuscript we consider the Boltzmann equation that models a polyatomic gas by introducing one additional continuous variable, referred to as microscopic internal energy. We establish existence and uniqueness theory in the space homogeneous setting for the full non-linear case, under an extended Grad assumption on transition probability rate, that comprises hard potentials for both the relative speed and internal energy with the rate in the interval $(0,2]$, which is multiplied by an integrable angular part and integrable partition functions. The Cauchy problem is resolved by means of an abstract ODE theory in Banach spaces, for an initial data with finite and strictly positive gas mass and energy, finite momentum, and additionally finite $k_*$ polynomial moment, with $k_*$ depending on the rate of the transition probability and the structure of a polyatomic molecule or its internal degrees of freedom. Moreover, we prove that polynomially and exponentially weighted Banach space norms associated to the solution are both generated and propagated uniformly in time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا