Do you want to publish a course? Click here

Coupling of ultrathin tapered fibers with high-Q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling

231   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We cooled ultrathin tapered fibers to cryogenic temperatures and controllably coupled them with high-Q microsphere resonators at a wavelength close to the optical transition of diamond nitrogen vacancy centers. The 310-nm-diameter tapered fibers were stably nanopositioned close to the microspheres with a positioning stability of approximately 10 nm over a temperature range of 7-28 K. A cavity-induced phase shift was observed in this temperature range, demonstrating a discrete transition from undercoupling to overcoupling.



rate research

Read More

Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path towards chip-scale integration. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryogenic temperatures. So far, these devices have been macroscopic with cm-scale dimensions. However, as we push these oscillators to high frequencies, we have an opportunity to radically reduce the footprint as a basis for classical and emerging quantum technologies. In this paper, we present novel design principles and simple fabrication techniques to create high performance chip-scale confocal bulk acoustic wave resonators in a wide array of crystalline materials. We tailor the acoustic modes of such resonators to efficiently couple to light, permitting us to perform a non-invasive laser-based phonon spectroscopy. Using this technique, we demonstrate an acoustic $Q$-factor of 28 million (6.5 million) for chip-scale resonators operating at 12.7 GHz (37.8 GHz) in crystalline $z$-cut quartz ($x$-cut silicon) at cryogenic temperatures.
We demonstrate cooling of ultrathin fiber tapers coupled with nitrogen vacancy (NV) centers in nanodiamonds to cryogenic temperatures. Nanodiamonds containing multiple NV centers are deposited on the subwavelength 480-nm-diameter nanofiber region of fiber tapers. The fiber tapers are successfully cooled to 9 K using our home-built mounting holder and an optimized cooling speed. The fluorescence from the nanodiamond NV centers is efficiently channeled into a single guided mode and shows characteristic sharp zero-phonon lines of both neutral and negatively charged NV centers. The present nanofiber/nanodiamond hybrid systems at cryogenic temperatures can be used as NV-based quantum information devices and for highly sensitive nanoscale magnetometry in a cryogenic environment.
We demonstrate adiabatically tapered fibers terminating in sub-micron tips that are clad with a higher-index material for coupling to an on-chip waveguide. This cladding enables coupling to a high-index waveguide without losing light to the buried oxide. A technique to clad the tip of the tapered fiber with a higher-index polymer is introduced. Conventional tapered waveguides and forked tapered waveguide structures are investigated for coupling from the clad fiber to the on-chip waveguide. We find the forked waveguide facilitates alignment and packaging, while the conventional taper leads to higher bandwidth. The insertion loss from a fiber through a forked coupler to a sub-micron silicon nitride waveguide is 1.1 dB and the 3 dB-bandwidth is 90 nm. The coupling loss in the packaged device is 1.3 dB. With a fiber coupled to a conventional tapered waveguide, the loss is 1.4 dB with a 3 dB bandwidth extending beyond the range of the measurement apparatus, estimated to exceed 250 nm.
We succeeded in measuring phase shift spectra of a microsphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable phase shift measurement scheme based on polarization analysis using photon counting. Using a very weak probe light (bar{n} = 0:41), we succeeded in observing the transition in the phase shift spectrum between undercoupling and overcoupling (at gap distances of 500 and 100 nm, respectively).We also used quantum state tomography to obtain a purity spectrum. Even in the overcoupling regime, the average purity was 0.982 pm 0.024 (minimum purity: 0.892), suggesting that the coherence of the fiber-microsphere system was well preserved. Based on these results, we believe this system is applicable to quantum phase gates using single light emitters such as diamond nitrogen vacancy centers.
We developed an apparatus to couple a 50-micrometer diameter whispering-gallery silica microtoroidal resonator in a helium-4 cryostat using a straight optical tapered-fiber at 1550nm wavelength. On a top-loading probe specifically adapted for increased mechanical stability, we use a specifically-developed cryotaper to optically probe the cavity, allowing thus to record the calibrated mechanical spectrum of the optomechanical system at low temperatures. We then demonstrate excellent thermalization of a 63-MHz mechanical mode of a toroidal resonator down to the cryostats base temperature of 1.65K, thereby proving the viability of the cryogenic refrigeration via heat conduction through static low-pressure exchange gas. In the context of optomechanics, we therefore provide a versatile and powerful tool with state-of-the-art performances in optical coupling efficiency, mechanical stability and cryogenic cooling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا