Do you want to publish a course? Click here

PT-Symmetric Electronics

91   0   0.0 ( 0 )
 Added by Hamidreza Ramezani
 Publication date 2012
  fields Physics
and research's language is English
 Authors J. Schindler




Ask ChatGPT about the research

We show both theoretically and experimentally that a pair of inductively coupled active LRC circuits (dimer), one with amplification and another with an equivalent amount of attenuation, display all the features which characterize a wide class of non-Hermitian systems which commute with the joint parity-time PT operator: typical normal modes, temporal evolution, and scattering processes. Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric Hamiltonian, which provides important insight for understanding the behavior of the system. When the PT-dimer is coupled to transmission lines, the resulting scattering signal reveals novel features which reflect the PT-symmetry of the scattering target. Specifically we show that the device can show two different behaviors simultaneously, an amplifier or an absorber, depending on the direction and phase relation of the interrogating waves. Having an exact theory, and due to its relative experimental simplicity, PT-symmetric electronics offers new insights into the properties of PT-symmetric systems which are at the forefront of the research in mathematical physics and related fields.



rate research

Read More

We show that complex PT-symmetric photonic lattices can lead to a new class of self-imaging Talbot effects. For this to occur, we find that the input field pattern, has to respect specific periodicities which are dictated by the symmetries of the system. While at the spontaneous PT-symmetry breaking point, the image revivals occur at Talbot lengths governed by the characteristics of the passive lattice, at the exact phase it depends on the gain and loss parameter thus allowing one to control the imaging process.
This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
Robust topological edge modes may evolve into complex-frequency modes when a physical system becomes non-Hermitian. We show that, while having negligible forward optical extinction cross section, a conjugate pair of such complex topological edge modes in a non-Hermitian $mathcal{PT}$-symmetric system can give rise to an anomalous sideway scattering when they are simultaneously excited by a plane wave. We propose a realization of such scattering state in a linear array of subwavelength resonators coated with gain media. The prediction is based on an analytical two-band model and verified by rigorous numerical simulation using multiple-multipole scattering theory. The result suggests an extreme situation where leakage of classical information is unnoticeable to the transmitter and the receiver when such a $mathcal{PT}$-symmetric unit is inserted into the communication channel.
We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber Bragg gratings (FBGs). The interplay among various grating parameters such as chirping, detuning, nonlinearities, and gain/loss gives rise to unique bi- and multi-stable states in the unbroken as well as broken $mathcal{PT}$-symmetric regimes. The role of chirping on the steering dynamics of the hysteresis curve is influenced by the type of nonlinearities and the nature of detuning parameter. Also, incident directions of the input light robustly impact the steering dynamics of bistable and multistable states both in the unbroken and broken $mathcal{PT}$-symmetric regimes. When the light launching direction is reversed, critical stable states are found to occur at very low intensities which opens up a new avenue for an additional way of controlling light with light. We also analyze the phenomenon of unidirectional wave transport and the reflective bi- and multi-stable characteristics at the so-called $mathcal{PT}$-symmetry breaking point.
By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time (PT-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of the systems undergo significant changes. On an example of an array of four waveguides described by the discrete nonlinear Schrodinger equation with dissipation and gain, we show that the equivalence of the underlying linear spectra implies similarity of neither structure nor stability of the nonlinear modes in the arrays. Even the existence of one-parametric families of nonlinear modes is not guaranteed by the PT symmetry of a newly obtained system. Neither the stability is directly related to the PT symmetry: stable nonlinear modes exist even when the spectrum of the linear array is not purely real. We use graph representation of PT-symmetric networks allowing for simple illustration of linearly equivalent networks and indicating on their possible experimental design.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا