Do you want to publish a course? Click here

Temperature-dependent proximity magnetism in Pt

122   0   0.0 ( 0 )
 Added by Sergei Urazhdin
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate the existence of magnetic coupling between two ferromagnets separated by a thin Pt layer. The coupling remains ferromagnetic regardless of the Pt thickness, and exhibits a significant dependence on temperature. Therefore, it cannot be explained by the established mechanisms of magnetic coupling across nonmagnetic spacers. We show that the experimental results are consistent with the presence of magnetism induced in Pt in proximity to ferromagnets, in direct analogy to the well-known proximity effects in superconductivity.

rate research

Read More

We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic atoms and the carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.
192 - M. Valvidares , N. Dix , M. Isasa 2015
Ultra-thin Pt films grown on insulating ferrimagnetic CoFe2O4 (111) epitaxial films display a magnetoresistance upon rotating the magnetization of the magnetic layer. We report here X-ray magnetic circular dichroism (XMCD) recorded at Pt-L2,3 and Pt-M3 edges. The results indicate that the Pt magnetic moment, if any, is below the detection limit (< 0.001 {mu}$_B$/Pt), thus strongly favoring the view that the presence of CoFe2O4 does not induce the formation of magnetic moments in Pt. Therefore, the observed magnetoresistance cannot be attributed to some sort of proximity-induced magnetic moments at Pt ions and subsequent magnetic-field dependent scattering. It thus follows that either bulk (spin Hall and Inverse spin Hall Effects) or interface (Rashba) spin-orbit related effects dominate the observed magnetoresistance. Furthermore, comparison of bulk magnetization and XMCD data at (Fe,Co)-L2,3 edges suggests the presence of some spin disorder in the CoFe2O4 layer which may be relevant for the observed anomalous non-saturating field-dependence of spin Hall magnetoresistance.
The magnetic proximity effect in top and bottom Pt layers induced by Co in Ta/Pt/Co/Pt multilayers has been studied by interface sensitive, element specific x-ray resonant magnetic reflectivity. The asymmetry ratio for circularly polarized x-rays of left and right helicity has been measured at the Pt $L_3$ absorption edge (11567 eV) with an in-plane magnetic field ($pm158$ mT) to verify its magnetic origin. The proximity-induced magnetic moment in the bottom Pt layer decreases with the thickness of the Ta buffer layer. Grazing incidence x-ray diffraction has been carried out to show that the Ta buffer layer induces the growth of Pt(011) rather than Pt(111) which in turn reduces the induced moment. A detailed density functional theory study shows that an adjacent Co layer induces more magnetic moment in Pt(111) than in Pt(011). The manipulation of the magnetism in Pt by the insertion of a Ta buffer layer provides a new way of controlling the magnetic proximity effect which is of huge importance in spin-transport experiments across similar kind of interfaces.
We demonstrate the low temperature suppression of the platinum (Pt) spin Nernst angle in bilayers consisting of the antiferromagnetic insulator hematite ($alpha$-Fe$_2$O$_3$) and Pt upon measuring the transverse spin Nernst magnetothermopower (TSNM). We show that the observed signal stems from the interplay between the interfacial spin accumulation in Pt originating from the spin Nernst effect and the orientation of the Neel vector of $alpha$-Fe$_2$O$_3$, rather than its net magnetization. Since the latter is negligible in an antiferromagnet, our device is superior to ferromagnetic structures, allowing to unambiguously distinguish the TSNM from thermally excited magnon transport (TMT), which usually dominates in ferri/ferromagnets due to their non-zero magnetization. Evaluating the temperature dependence of the effect, we observe a vanishing TSNM below ~100 K. We compare these results with theoretical calculations of the temperature dependent spin Nernst conductivity and find excellent agreement. This provides evidence for a vanishing spin Nernst angle of Pt at low temperatures and the dominance of extrinsic contributions to the spin Nernst effect.
113 - Laurent Vila 2007
We have studied the evolution of the Spin Hall Effect in the regime where the material size responsible for the spin accumulation is either smaller or larger than the spin diffusion length. Lateral spin valve structures with Pt insertions were successfully used to measure the spin absorption efficiency as well as the spin accumulation in Pt induced through the spin Hall effect. Under a constant applied current the results show a decrease of the spin accumulation signal is more pronounced as the Pt thickness exceeds the spin diffusion length. This implies that the spin accumulation originates from bulk scattering inside the Pt wire and the spin diffusion length limits the SHE. We have also analyzed the temperature variation of the spin hall conductivity to identify the dominant scattering mechanism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا