Do you want to publish a course? Click here

A multi-level model for self-adaptive systems

294   0   0.0 ( 0 )
 Added by Nicola Paoletti
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

This work introduces a general multi-level model for self-adaptive systems. A self-adaptive system is seen as composed by two levels: the lower level describing the actual behaviour of the system and the upper level accounting for the dynamically changing environmental constraints on the system. In order to keep our description as general as possible, the lower level is modelled as a state machine and the upper level as a second-order state machine whose states have associated formulas over observable variables of the lower level. Thus, each state of the second-order machine identifies the set of lower-level states satisfying the constraints. Adaptation is triggered when a second-order transition is performed; this means that the current system no longer can satisfy the current high-level constraints and, thus, it has to adapt its behaviour by reaching a state that meets the new constraints. The semantics of the multi-level system is given by a flattened transition system that can be statically checked in order to prove the correctness of the adaptation model. To this aim we formalize two concepts of weak and strong adaptability providing both a relational and a logical characterization. We report that this work gives a formal computational characterization of multi-level self-adaptive systems, evidencing the important role that (theoretical) computer science could play in the emerging science of complex systems.



rate research

Read More

This paper introduces a proposal for a Proof Carrying Code (PCC) architecture called Lissom. Started as a challenge for final year Computing students, Lissom was thought as a mean to prove to a sceptic community, and in particular to students, that formal verification tools can be put to practice in a realistic environment, and be used to solve complex and concrete problems. The attractiveness of the problems that PCC addresses has already brought students to show interest in this project.
We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantially lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.
This volume contains the proceedings of the First International Workshop of Formal Techniques for Safety-Critical Systems (FTSCS 2012), held in Kyoto on November 12, 2012, as a satellite event of the ICFEM conference. The aim of this workshop is to bring together researchers and engineers interested in the application of (semi-)formal methods to improve the quality of safety-critical computer systems. FTSCS is particularly interested in industrial applications of formal methods. Topics include: - the use of formal methods for safety-critical and QoS-critical systems, including avionics, automotive, and medical systems; - methods, techniques and tools to support automated analysis, certification, debugging, etc.; - analysis methods that address the limitations of formal methods in industry; - formal analysis support for modeling languages used in industry, such as AADL, Ptolemy, SysML, SCADE, Modelica, etc.; and - code generation from validated models. The workshop received 25 submissions; 21 of these were regular papers and 4 were tool/work-in-progress/position papers. Each submission was reviewed by three referees; based on the reviews and extensive discussions, the program committee selected nine regular papers, which are included in this volume. Our program also included an invited talk by Ralf Huuck.
We propose a process calculus, named AbC, to study the behavioural theory of interactions in collective-adaptive systems by relying on attribute-based communication. An AbC system consists of a set of parallel components each of which is equipped with a set of attributes. Communication takes place in an implicit multicast fashion, and interaction among components is dynamically established by taking into account connections as determined by predicates over their attributes. The structural operational semantics of AbC is based on Labeled Transition Systems that are also used to define bisimilarity between components. Labeled bisimilarity is in full agreement with a barbed congruence, defined by simple basic observables and context closure. The introduced equivalence is used to study the expressiveness of AbC in terms of encoding broadcast channel-based interactions and to establish formal relationships between system descriptions at different levels of abstraction.
This volume contains the proceedings of the First Workshop on Logics and Model-checking for self-* systems (MOD* 2014). The worshop took place in Bertinoro, Italy, on 12th of September 2014, and was a satellite event of iFM 2014 (the 11th International Conference on Integrated Formal Methods). The workshop focuses on demonstrating the applicability of Formal Methods on modern complex systems with a high degree of self-adaptivity and reconfigurability, by bringing together researchers and practitioners with the goal of pushing forward the state of the art on logics and model checking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا