No Arabic abstract
HST is commonly thought of as an optical-IR imaging or UV-spectroscopy observatory. However, the advent of WFC3-IR made it possible to do slitless infrared spectroscopic surveys over an area significant for galaxy evolution studies (~0.15 deg^2). Slitless infrared spectroscopy is uniquely possible from space due to the reduced background. Redshift surveys with WFC3-IR offer probes of the astrophysics of the galaxy population at z=1-3 from line features, and the true redshift and spatial distribution of galaxies, that cannot be done with photometric surveys alone. While HST slitless spectroscopy is low spectral resolution, its high multiplex advantage makes it competitive with future ground based IR spectrographs, its flux calibration is stable, and its high spatial resolution allows measuring the spatial extent of emission lines, which only HST can do currently for large numbers of objects. A deeper slitless IR spectroscopic survey over hundreds of arcmin^2 (eg one or more GOODS fields) is one of the remaining niches for large galaxy evolution studies with HST, and would produce a sample of thousands of spectroscopically confirmed galaxies at 1<z<3 to H=25 and beyond, of great interest to a large community of investigators. Finally, although JWST multislit spectroscopy will outstrip HST in resolution and sensitivity, I believe it is critical to have a spectroscopic sample in hand before JWST flies. This applies scientifically, to be prepared for the questions we want to answer with JWST, and observationally, because JWSTs lifetime is limited and a classic problem in targeted spectroscopy has been the turn-around time for designing surveys and for deciding which classes of objects to target. This white paper is released publicly to stimulate open discussion of future large HST programs.
We present near-infrared emission line counts and luminosity functions from the HST WFC3 Infrared Spectroscopic Parallels (WISP) program for 29 fields (0.037 deg^2) observed using both the G102 and G141 grisms. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Angstroms, 467 of which have multiple detected emission lines. The WISP survey is sensitive to fainter flux levels (3-5x10^-17 ergs/s/cm^2) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology (1-4x10^-16 ergs/s/cm^2), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7<z<1.5 galaxies reach 10,000 deg^-2 above an H-alpha flux of 2x10^-16 ergs/s/cm^2. H-alpha-emitting galaxies with comparable [OIII] flux are roughly 5 times less common than galaxies with just H-alpha emission at those flux levels. Galaxies with low H-alpha/[OIII] ratios are very rare at the brighter fluxes that future near-infrared grism surveys will probe; our survey finds no galaxies with H-alpha/[OIII] < 0.95 that have H-alpha flux greater than 3x10^-16 ergs/s/cm^2. Our H-alpha luminosity function contains a comparable number density of faint line emitters to that found by the NICMOS near-infrared grism surveys, but significantly fewer (factors of 3-4 less) high luminosity emitters. We also find that our high redshift (z=0.9-1.5) counts are in agreement with the high redshift (z=1.47) narrow band H-alpha survey of HiZELS (Sobral et al. 2013), while our lower redshift luminosity function (z=0.3-0.9) falls slightly below their z=0.84 result. The evolution in both the H-alpha luminosity function from z=0.3--1.5 and the [OIII] luminosity function from z=0.7-2.3 is almost entirely in the L* parameter, which steadily increases with redshift over those ranges.
We present a grism extraction package (LINEAR) designed to reconstruct one-dimensional spectra from a collection of slitless spectroscopic images, ideally taken at a variety of orientations, dispersion directions, and/or dither positions. Our approach is to enumerate every transformation between all direct image positions (ie. a potential source) and the collection of grism images at all relevant wavelengths. This leads to solving a large, sparse system of linear equations, which we invert using the standard LSQR algorithm. We implement a number of color and geometric corrections (such as flat field, pixel-area map, source morphology, and spectral bandwidth), but assume many effects have been calibrated out (such as basic reductions, background subtraction, and astrometric refinement). We demonstrate the power of our approach with several Monte Carlo simulations and the analysis of archival data. The simulations include astrometric and photometric uncertainties, sky-background estimation, and signal-to-noise calculations. The data are G141 observations obtained with the Wide-Field Camera 3 of the Hubble Ultra-Deep Field, and show the power of our formalism by improving the spectral resolution without sacrificing the signal-to-noise (a tradeoff that is often made by current approaches). Additionally, our approach naturally accounts for source contamination, which is only handled heuristically by present softwares. We conclude with a discussion of various observations where our approach will provide much improved spectral one-dimensional spectra, such as crowded fields (star or galaxy clusters), spatially resolved spectroscopy, or surveys with strict completeness requirements. At present our software is heavily geared for Wide-Field Camera 3 IR, however we plan extend the codebase for additional instruments.
The Advanced Camera for Surveys on-board HST is equipped with a set of one grism and three prisms for low-resolution, slitless spectroscopy in the range 1150 Ang. to 10500 Ang. The G800L grism provides optical spectroscopy between 5500 Ang. and 1 micron with a mean dispersion of 39 Ang./pix and 24 Ang./pix (in the first spectral order) when coupled with the Wide Field and the High Resolution Channels, respectively. Given the lack of any on-board calibration lamps for wavelength and narrow band flat-fielding, the G800L grism can only be calibrated using astronomical targets. In this paper, we describe the strategy used to calibrate the grism in orbit, with special attention to the treatment of the field dependence of the grism flat-field, wavelength solution and sensitivity in both Channels.
We report on deep near-infrared observations obtained with the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formation rates of approximately 400 to 2000 M_sol/yr, with approximately (6-25)x10^10 M_sol of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than 100 Myr, reaching a final mass in stars of a few 10^11 M_sol. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch z=1.5-3 of the cosmic star formation history of the Universe.
We present new calibrations of the near-infrared surface brightness fluctuation (SBF) distance method for the F110W (J) and F160W (H) bandpasses of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope. The calibrations are based on data for 16 early-type galaxies in the Virgo and Fornax clusters observed with WFC3/IR and are provided as functions of both the optical (g-z) and near-infrared (J-H) colors. The scatter about the linear calibration relations for the luminous red galaxies in the sample is approximately 0.10 mag, corresponding to a statistical error of 5% in distance. Our results imply that the distance to any suitably bright elliptical galaxy can be measured with this precision out to about 80 Mpc in a single-orbit observation with WFC3/IR, making this a remarkably powerful instrument for extragalactic distances. The calibration sample also includes much bluer and lower-luminosity galaxies than previously used for IR SBF studies, revealing interesting population differences that cause the calibration scatter to increase for dwarf galaxies.