Do you want to publish a course? Click here

An ALMA survey of Sub-millimetre Galaxies in the Extended Chandra Deep Field South: Detection of [C II] at z=4.4

228   0   0.0 ( 0 )
 Added by Mark Swinbank Dr.
 Publication date 2012
  fields Physics
and research's language is English
 Authors Mark Swinbank




Ask ChatGPT about the research

We present ALMA 870-um (345GHz) observations of two sub-millimetre galaxies (SMGs) drawn from an ALMA study of the 126 sub-millimeter sources from the LABOCA Extended Chandra Deep Field South Survey (LESS). The ALMA data identify the counterparts to these previously unidentified sub-millimeter sources and serendipitously detect bright emission lines in their spectra which we show are most likely to be [C II]157.74um emission yielding redshifts of z=4.42 and z=4.44. This blind detection rate within the 7.5-GHz bandpass of ALMA is consistent with the previously derived photometric redshift distribution of SMGs and suggests a modest, but not dominant (<25%), tail of 870-um selected SMGs at z>4. We find that the ratio of L_CII/L_FIR in these SMGs is much higher than seen for similarly far-infrared-luminous galaxies at z~0, which is attributed to the more extended gas reservoirs in these high-redshift ULIRGs. Indeed, in one system we show that the [C II] emission shows hints of extended emission on >3kpc scales. Finally, we use the volume probed by our ALMA survey to show that the bright end of the [C II] luminosity function evolves strongly between z=0 and z~4.4, reflecting the increased ISM cooling in galaxies as a result of their higher star-formation rates. These observations demonstrate that even with short integrations, ALMA is able to detect the dominant fine structure cooling lines from high-redshift ULIRGs, measure their energetics and trace their evolution with redshift.



rate research

Read More

134 - R. Decarli , I. Smail , F. Walter 2013
We study the sub-mm properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-mm wavelengths. We base our study on 344 GHz ALMA continuum observations of ~20-wide fields centered on 86 sub-mm sources detected in the LABOCA Extended Chandra Deep Field South Sub-mm Survey (LESS). We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects and distant red galaxies) according to their optical/NIR fluxes. We find clear, >10-sigma detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust SED of these galaxies. We find that their dust emission is well described by a modified black body with Tdust~30 K and beta=1.6 and IR luminosities of (5-11)x10^{11} Lsun, or implied star formation rates of 75-140 Msun/yr. We compare our results with those of previous studies based on single-dish observations at 870 micron and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4,GHz observations of the whole ECDFS. Hence we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.
121 - J. A. Hodge , A. Karim , I. Smail 2013
We present an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS). Our 870 micron survey with ALMA (ALESS) has produced maps ~3X deeper and with a beam area ~200X smaller than the original LESS observations, doubling the current number of interferometrically-observed submillimeter sources. The high resolution of these maps allows us to resolve sources that were previously blended and accurately identify the origin of the submillimeter emission. We discuss the creation of the ALESS submillimeter galaxy (SMG) catalog, including the main sample of 99 SMGs and a supplementary sample of 32 SMGs. We find that at least 35% (possibly up to 50%) of the detected LABOCA sources have been resolved into multiple SMGs, and that the average number of SMGs per LESS source increases with LESS flux density. Using the (now precisely known) SMG positions, we empirically test the theoretical expectation for the uncertainty in the single-dish source positions. We also compare our catalog to the previously predicted radio/mid-infrared counterparts, finding that 45% of the ALESS SMGs were missed by this method. Our ~1.6 resolution allows us to measure a size of ~9 kpc X 5 kpc for the rest-frame ~300 um emission region in one resolved SMG, implying a star formation rate surface density of 80 M_sol yr^-1 kpc^-2, and we constrain the emission regions in the remaining SMGs to be <10 kpc. As the first statistically reliable survey of SMGs, this will provide the basis for an unbiased multiwavelength study of SMG properties.
We present spectroscopic redshifts of S(870)>2mJy submillimetre galaxies (SMGs) which have been identified from the ALMA follow-up observations of 870um detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z=2.4+/-0.1. However, the distribution features a high redshift tail, with ~25% of the SMGs at z>3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets up to 2000km/s. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimised spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of M*=(6+/-1)x10^{10}Msol for our SMGs with spectroscopic redshifts. By combining these stellar masses with the star-formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor ~5 above the main-sequence at z~2. We provide this library of 52 template fits with robust and well-sampled SEDs available as a resource for future studies of SMGs, and also release the spectroscopic catalog of ~2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.
127 - Alexander Karim 2012
We report the first counts of faint submillimetre galaxies (SMG) in the 870-um band derived from arcsecond resolution observations with the Atacama Large Millimeter Array (ALMA). We have used ALMA to map a sample of 122 870-um-selected submillimetre sources drawn from the (0.5x0.5)deg^2 LABOCA Extended Chandra Deep Field South Submillimetre Survey (LESS). These ALMA maps have an average depth of sigma(870um)~0.4mJy, some ~3x deeper than the original LABOCA survey and critically the angular resolution is more than an order of magnitude higher, FWHM of ~1.5 compared to ~19 for the LABOCA discovery map. This combination of sensitivity and resolution allows us to precisely pin-point the SMGs contributing to the submillimetre sources from the LABOCA map, free from the effects of confusion. We show that our ALMA-derived SMG counts broadly agree with the submillimetre source counts from previous, lower-resolution single-dish surveys, demonstrating that the bulk of the submillimetre sources are not caused by blending of unresolved SMGs. The difficulty which well-constrained theoretical models have in reproducing the high-surface densities of SMGs, thus remains. However, our observations do show that all of the very brightest sources in the LESS sample, S(870um)>12mJy, comprise emission from multiple, fainter SMGs, each with 870-um fluxes of <9mJy. This implies a natural limit to the star-formation rate in SMGs of <10^3 M_Sun/yr, which in turn suggests that the space densities of z>1 galaxies with gas masses in excess of ~5x10^10 M_Sun is <10^-5 Mpc^-3. We also discuss the influence of this blending on the identification and characterisation of the SMG counterparts to these bright submillimetre sources and suggest that it may be responsible for previous claims that they lie at higher redshifts than fainter SMGs.
389 - Mark Swinbank 2013
We exploit ALMA 870um (345GHz) observations of submillimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift submillimetre galaxies (SMGs). Using the precisely located 870um ALMA positions of 99 SMGs, together with 24um and radio imaging of this field, we deblend the Herschel/SPIRE imaging of this region to extract their far-infrared fluxes and colours. The median photometric redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their SEDs, with z=2.3+/-0.2, 2.5+/-0.3 and 3.5+/-0.5 for the 250, 350 and 500-um peakers respectively. We find that 34 ALESS SMGs do not have a >3-sigma counterpart at 250, 350 or 500-um. These galaxies have a median photometric redshift of z=3.3+/-0.5, which is higher than the full ALESS SMG sample; z=2.5+/-0.2. Using the photometric redshifts together with the 250-870um photometry, we estimate the far-infrared luminosities and characteristic dust temperature of each SMG. The median infrared luminosity of the S_870um>2mJy SMGs is L_IR=(3.0+/-0.3)x10^{12}Lo(SFR=300+/-30Mo/yr). At a fixed luminosity, the characteristic dust temperature of these high-redshift SMGs is 2-3K lower than comparably luminous galaxies at z=0, reflecting the more extended star formation occurring in these systems. By extrapolating the 870um number counts to S_ 870um=1mJy, we show that the contribution of S_870um>1mJy SMGs to the cosmic star formation budget is 20% of the total over the redshift range z~1-4. We derive a median dust mass for these SMGs of M_d=(3.6+/-0.3)x10^8Mo and by adopting an appropriate gas-to-dust ratio, we estimate an average molecular mass of M_H2=(4.2+/-0.4)x10^{10}Mo. Finally, we use our estimates of the H2 masses to show that SMGs with S_870um>1mJy contain ~10% of the z~2 volume-averaged H2 mass density at this epoch.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا