No Arabic abstract
The Saha equation describes the relative number density of consecutive ionization levels of a given atomic species under conditions of thermodynamic equilibrium in an ionized gas. Because the number density in the denominator may be very small, special steps must be taken to ensure numerical stability. In this paper we recast the equation into a form in which each ionization fraction is normalized by the total number density of the atomic species, analogous to the Boltzmann equation describing the distribution of excitation states for a given ion.
We present an example of an interpolation code of the SAHA-S equation of state that has been adapted for use in the stellar evolution code CESAM2k. The aim is to provide the necessary data and numerical procedures for its implementation in a stellar code. A technical problem is the discrepancy between the sets of thermodynamic quantities provided by the SAHA-S equation of state and those necessary in the CESAM2k computations. Moreover, the independent variables in a practical equation of state (like SAHA-S) are temperature and density, whereas for modelling calculations the variables temperature and pressure are preferable. Specifically for the CESAM2k code, some additional quantities and their derivatives must be provided. To provide the bridge between the equation of state and stellar modelling, we prepare auxiliary tables of the quantities that are demanded in CESAM2k. Then we use cubic spline interpolation to provide both smoothness and a good approximation of the necessary derivatives. Using the B-form of spline representation provides us with an efficient algorithm for three-dimensional interpolation. The table of B-spline coefficients provided can be directly used during stellar model calculations together with the module of cubic spline interpolation. This implementation of the SAHA-S equation of state in the CESAM2k stellar structure and evolution code has been tested on a solar model evolved to the present. A comparison with other equations of state is briefly discussed. The choice of a regular net of mesh points for specific primary quantities in the SAHA-S equation of state, together with accurate and consistently smooth tabulated values, provides an effective algorithm of interpolation in modelling calculations. The proposed module of interpolation procedures can be easily adopted in other evolution codes.
Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. We report the cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that ~2% of our line list and Vienna Atomic Line Database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transitions are available to download at brass.sdf.org.
We consider three recent large-scale calculations for the radiative and electron-impact excitation data of N IV, carried out with different methods and codes. The scattering calculations employed the relativistic Dirac $R$-matrix (DARC) method, the intermediate coupling frame transformation (ICFT) $R$-matrix method, and the B-spline $R$-matrix (BSR) method. These are all large-scale scattering calculations with well-tested and sophisticated codes, which use the same set of target states. One concern raised in previous literature is related to the increasingly large discrepancies in the effective collision strengths between the three sets of calculations for increasingly weak and/or high-lying transitions. We have built three model ions and calculated the intensities of all the main spectral lines in this ion. We have found that, despite such large differences, excellent agreement (to within $pm$~20%) exists between all the spectroscopically-relevant line intensities. This provides confidence in the reliability of the calculations for plasma diagnostics. We have used the differences in the radiative and excitation rates amongst the three sets of calculations to obtain a measure of the uncertainty in each rate. Using a Monte Carlo approach, we have shown how these uncertainties affect the main theoretical ratios which are used to measure electron densities and temperatures.
We present version 8 of the CHIANTI database. This version includes a large amount of new data and ions, which represent a significant improvement in the soft X-ray, EUV and UV spectral regions, which several space missions currently cover. New data for neutrals and low charge states are also added. The data are assessed, but to improve the modelling of low-temperature plasma the effective collision strengths for most of the new datasets are not spline-fitted as previously, but are retained as calculated. This required a change of the format of the CHIANTI electron excitation files. The format of the energy files has also been changed. Excitation rates between all the levels are retained for most of the new datasets, so the data can in principle be used to model high-density plasma. In addition, the method for computing the differential emission measure used in the CHIANTI software has been changed.
A review of a renewed effort to recalculate astrophysical opacities using the R-Matrix method is presented. The computational methods and new extensions are described. Resulting enhancements found in test calculations under stellar interior conditions compared to the Opacity Project could potentially lead to the resolution of the solar abundances problem, as well as discrepancies between recent experimental measurements at the Sandia Z-pinch inertial confinement fusion device and theoretical opacity models. Outstanding issues also discussed are: (i) accuracy, convergence, and completeness of atomic calculations, (ii) improvements in the Equation-of-State of high-temperature-density plasmas, and (iii) redistribution of resonant oscillator strength in the bound-free continuum, and (iv) plasma broadening of auotionizing resonances.