Do you want to publish a course? Click here

Ill-posedness results for generalized Boussinesq equations

243   0   0.0 ( 0 )
 Added by Dan Geba
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

In this article we present ill-posedness results for generalized Boussinesq equations, which incorporate also the ones obtained by the authors for the classical good Boussinesq equation (arXiv:1202.6671). More precisely, we show that the associated flow map is not smooth for a range of Sobolev indices, thus providing a threshold for the regularity needed to perform a Picard iteration for these problems.



rate research

Read More

The aim of this article is to prove new ill-posedness results concerning the nonlinear good Boussinesq equation, for both the periodic and non-periodic initial value problems. Specifically, we prove that the associated flow map is not continuous in Sobolev spaces $H^s$, for all $s<-1/2$.
112 - Mengyun Liu , Chengbo Wang 2018
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-posed in $H^{s}$ with $s = (n+5)/4$ in general. Moreover, when the nonlinearity is quadratic we establish a characterization of the structure of nonlinear terms in terms of the regularity. As a byproduct, we give an alternative proof of the failure of the local in time endpoint scale-invariant $L_{t}^{4/(n-1)}L_{x}^{infty}$ Strichartz estimates. Finally, as an application, we also prove ill-posed results for some semilinear half wave equations.
215 - Yixian Gao , Yong Li , Chang Su 2020
This paper concerns the local well-posedness for the good Boussinesq equation subject to quasi-periodic initial conditions. By constructing a delicately and subtly iterative process together with an explicit combinatorial analysis, we show that there exists a unique solution for such a model in a small region of time. The size of this region depends on both the given data and the frequency vector involved. Moreover the local solution has an expansion with exponentially decaying Fourier coefficients.
68 - Min Li , Yingying Guo 2021
In the paper, by constructing a initial data $u_{0}in B^{sigma}_{p,infty}$ with $sigma-2>max{1+frac 1 p, frac 3 2}$, we prove that the corresponding solution to the higher dimensional Camassa-Holm equations starting from $u_{0}$ is discontinuous at $t=0$ in the norm of $B^{sigma}_{p,infty}$, which implies that the ill-posedness for the higher dimensional Camassa-Holm equations in $B^{sigma}_{p,infty}$.
Norm inflation implies certain discontinuous dependence of the solution on the initial value. The well-posedness of the mild solution means the existence and uniqueness of the fixed points of the corresponding integral equation. For ${rm BMO}^{-1}$, Auscher-Dubois-Tchamitchian proved that Koch-Tatarus solution is stable. In this paper, we construct a non-Gauss flow function to show that, for classic Navier-Stokes equations, wellposedness and norm inflation may have no conflict and stability may have meaning different to $L^{infty}(({rm BMO}^{-1})^{n})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا