Do you want to publish a course? Click here

PKS 2123-463: a confirmed gamma-ray blazar at high redshift

276   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46+/-0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disk has a luminosity of about 1.8x10^46 erg/s, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of about 2x10^9 solar masses. This is the first black hole mass estimate for this source.



rate research

Read More

The BL-Lac blazar PKS 0447-439 was detected at very high energy gamma-rays by HESS following the discovery by Fermi-LAT. The lack of both emission and absorption lines in BL-Lacs make the estimation of their redshifts very difficult. Modeling the drop in gamma-ray spectra it was possible to have an estimation of redshift for PKS 0447-439 of z approx 0.2, which is compatible with the value z=0.205 reported by the identification of Ca II absorption lines in optical spectra. By the identification of a weak line of Mg II using spectra with average signal-to-noise S/N approx 80, it has been recently reported a lower limit for the redshift of this blazar of z<=1.246. Triggered by this controversy, we have proposed new optical observations with the Gemini South telescope to perform further spectroscopic analysis with very high S/N ratio (approx 200-500). In this work we present a new optical spectrum of PKS 0447-439, and report on the analysis and results of such observations. Even with this significantly high quality signal we were not able to identify any spectral features to allow an estimation of the redshift. In agreement with other recent studies, we identify the Mg II line reported previously as originated in the Earths atmosphere, and conclude the lower limit of the redshift is incorrect. More interestingly, we could not identify the Ca II absorption lines used to report a redshift of 0.205.
PKS 1424+240 is a BL-Lac blazar with unknown redshift detected at high-energy gamma rays by Fermi-LAT with a hard spectrum. It was first detected at very-high-energy by VERITAS and latter confirmed by MAGIC. Attempts to find limits on its redshift include three estimations by modeling gamma-ray observations, and one obtained by analyzing Lyb and Lyg absorption lines observed in the far-UV spectra (from HST/COS) caused by absorbing gas along the line of sight. They allowed to constrain the redshift range to 0:6<z<1:19, which places PKS 1424+240 in the very interesting condition to be one of the few candidates to be the most distant blazars detected at very-high-energy gamma rays. Redshift determination of BL-Lac objects are difficult to achieve. We have found that redshift of blazars can be determined by its association to a galaxy group or cluster. To explore this possibility for PKS 1424+240, we have carried out spectroscopic measurements with the Gemini North telescope of galaxies in its field of view. In this work we present the optical spectrum of PKS 1424+240 and show preliminary results of the blazar environment characterization. Spectroscopic redshift using the optical spectrum of PKS 1424+240 could not be determined in this work.
Context. Blazars are among the most energetic objects in the Universe. In 2008 August, Fermi/LAT detected the blazar PKS 1502+106 showing a rapid and strong gamma-ray outburst followed by high and variable flux over the next months. This activity at high energies triggered an intensive multi-wavelength campaign covering also the radio, optical, UV, and X-ray bands indicating that the flare was accompanied by a simultaneous outburst at optical/UV/X-rays and a delayed outburst at radio bands. Aims: In the current work we explore the phenomenology and physical conditions within the ultra-relativistic jet of the gamma-ray blazar PKS 1502+106. Additionally, we address the question of the spatial localization of the MeV/GeV-emitting region of the source. Methods: We utilize ultra-high angular resolution mm-VLBI observations at 43 and 86 GHz complemented by VLBI observations at 15 GHz. We also employ single-dish radio data from the F-GAMMA program at frequencies matching the VLBI monitoring. Results: PKS 1502+106 shows a compact core-jet morphology and fast superluminal motion with apparent speeds in the range 5--22 c. Estimation of Doppler factors along the jet yield values between ~7 up to ~50. This Doppler factor gradient implies an accelerating jet. The viewing angle towards the source differs between the inner and outer jet, with the former at ~3 degrees and the latter at ~1 degree, after the jet bends towards the observer beyond 1 mas. The de-projected opening angle of the ultra-fast, magnetically-dominated jet is found to be (3.8 +/- 0.5) degrees. A single jet component can be associated with the pronounced flare both at high-energies and in radio bands. Finally, the gamma-ray emission region is localized at less than 5.9 pc away from the jet base.
High-redshift gamma-ray bursts have several advantages for the study of the distant universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of the class of such distant events. We present the multi-wavelength analysis of the high-$z$ Swift gamma-ray burst GRB140515A ($z = 6.327$). The best estimate of the neutral hydrogen fraction of the intergalactic medium (IGM) towards the burst is $x_{HI} leq 0.002$. The spectral absorption lines detected for this event are the weakest lines ever observed in gamma-ray burst afterglows, suggesting that GRB140515A exploded in a very low density environment. Its circum-burst medium is characterised by an average extinction (A$_{rm V} sim 0.1$) that seems to be typical of $z ge 6$ events. The observed multi-band light curves are explained either with a very flat injected spectrum ($p = 1.7$) or with a multi-component emission ($p = 2.1$). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB140515A from a Pop III (or from a Pop II stars with local environment enriched by Pop III) massive star is unlikely.
High-redshift ($z>2$) blazars are the most powerful members of the blazar family. Yet, only a handful of them have both X-ray and $gamma$-ray detection, thereby making it difficult to characterize the energetics of the most luminous jets. Here, we report, for the first time, the Fermi-Large Area Telescope detection of the significant $gamma$-ray emission from the high-redshift blazar DA 193 ($z=2.363$). Its time-averaged $gamma$-ray spectrum is soft ($gamma$-ray photon index = $2.9pm0.1$) and together with a relatively flat hard X-ray spectrum (14$-$195 keV photon index = $1.5pm0.4$), DA 193 presents a case to study a typical high-redshift blazar with inverse Compton peak being located at MeV energies. An intense GeV flare was observed from this object in the first week of 2018 January, a phenomenon rarely observed from high-redshift sources. What makes this event a rare one is the observation of an extremely hard $gamma$-ray spectrum (photon index = $1.7pm0.2$), which is somewhat unexpected since high-redshift blazars typically exhibit a steep falling spectrum at GeV energies. The results of our multi-frequency campaign, including both space- (Fermi, NuSTAR, and Swift) and ground-based (Steward and Nordic Optical Telescope) observatories, are presented and this peculiar $gamma$-ray flare is studied within the framework of a single-zone leptonic emission scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا