Do you want to publish a course? Click here

Beyond the Neutron Drip-Line: The Unbound Oxygen Isotopes 25O and 26O

163   0   0.0 ( 0 )
 Added by Christoph Caesar
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The very neutron-rich oxygen isotopes 25O and 26O are investigated experimentally and theoret- ically. In this first R3B-LAND experiment, the unbound states are populated at GSI via proton- knockout reactions from 26F and 27F at relativistic energies around 450 MeV/nucleon. From the kinematically complete measurement of the decay into 24O plus one or two neutrons, the 25O ground- state energy and lifetime are determined, and upper limits for the 26O ground state are extracted. In addition, the results provide evidence for an excited state in 26O at around 4 MeV. The ex- perimental findings are compared to theoretical shell-model calculations based on chiral two- and three-nucleon (3N) forces, including for the first time residual 3N forces, which are shown to be amplified as valence neutrons are added.



rate research

Read More

Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The $^{26}$F nucleus, composed of a deeply bound $pi0d_{5/2}$ proton and an unbound $ u0d_{3/2}$ neutron on top of an $^{24}$O core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a $J^{pi} = 1^{+}_1 - 4^{+}_1$ multiplet, whose energies must be determined to study the influence of the proximity of the continuum on the corresponding proton-neutron interaction. The $J^{pi} = 1^{+}_1, 2^{+}_1,4^{+}_1$ bound states have been determined, and only a clear identification of the $J^{pi} =3^{+}_1$ is missing.Purpose: We wish to complete the study of the $J^{pi} = 1^{+}_1 - 4^{+}_1$ multiplet in $^{26}$F, by studying the energy and width of the $J^{pi} =3^{+}_1$ unbound state. The method was firstly validated by the study of unbound states in $^{25}$F, for which resonances were already observed in a previous experiment.Method: Radioactive beams of $^{26}$Ne and $^{27}$Ne, produced at about $440A$,MeV by the FRagment Separator at the GSI facility, were used to populate unbound states in $^{25}$F and $^{26}$F via one-proton knockout reactions on a CH$_2$ target, located at the object focal point of the R$^3$B/LAND setup. The detection of emitted $gamma$-rays and neutrons, added to the reconstruction of the momentum vector of the $A-1$ nuclei, allowed the determination of the energy of three unbound states in $^{25}$F and two in $^{26}$F. Results: Based on its width and decay properties, the first unbound state in $^{25}$F is proposed to be a $J^{pi} = 1/2^-$ arising from a $p_{1/2}$ proton-hole state. In $^{26}$F, the first resonance at 323(33)~keV is proposed to be the $J^{pi} =3^{+}_1$ member of the $J^{pi} = 1^{+}_1 - 4^{+}_1$ multiplet. Energies of observed states in $^{25,26}$F have been compared to calculations using the independent-particle shell model, a phenomenological shell-model, and the ab initio valence-space in-medium similarity renormalization group method.Conclusions: The deduced effective proton-neutron interaction is weakened by about 30-40% in comparison to the models, pointing to the need of implementing the role of the continuum in theoretical descriptions, or to a wrong determination of the atomic mass of $^{26}$F.
First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about $7cdot 10^{-8}$, nine of them for the first time. Four nuclides ($^{144, 145}$Ho and $^{147, 148}$Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies.
75 - J. G. Li , N. Michel , W. Zuo 2021
The Gamow shell model has shown to efficiently describe weakly bound and unbound nuclear systems, as internucleon correlations and continuum coupling are both taken into account in this model. In the present work, we study neutron-dripline oxygen isotopes. It is hereby demonstrated that the presence of continuum coupling is important for the description of oxygen isotopes at dripline, and especially to assess the eventual bound or unbound character of $^{28}$O. Our results suggest that the ground state of $^{28}$O is weakly unbound and is similar to the narrow resonant $^{26}$O ground state. Predictions of weakly bound and resonance excited states in $^{24text-26}$O are also provided. The asymptotes of the studied many-body states are analyzed via one-body densities, whereby the different radial properties of well bound, loosely bound, resonance states are clearly depicted.
The $beta$-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with $beta$-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb and Bi in the mass region N$gtrsim$126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the $beta$-decay strength distribution. In doing so, it provides important constraints to global theoretical models currently used in $r$-process nucleosynthesis.
The eastern region of the calcium isotope chain of the nuclei chart is, nowadays, of great activity. The experimental assessment of the limit of stability is of interest to confirm or improve microscopic theoretical models. The goal of this work is to provide the drip line of the calcium isotopes from the exact solution of the pairing Hamiltonian which incorporates explicitly the correlations with the continuum spectrum of energy. The modified Richardson equations, which include correlations with the continuum spectrum of energy modeled by the continuum single particle level density, is used to solve the many-body system. Three models are used, two isospin independent models with core 40Ca and 48Ca, and one isospin dependent model. One and two-neutron separation energies and occupation probabilities for bound and continuum states are calculated from the solution of the Richardson equations. The one particle drip line is found at the nucleus 57Ca, while the two neutron drip line is found at the nucleus 60Ca from the isospin independent model and at 66Ca from the isospin dependent one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا