Do you want to publish a course? Click here

Fermion Pairing across a Dipolar Interaction Induced Resonance

142   0   0.0 ( 0 )
 Added by Ran Qi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is known from the solution of the two-body problem that an anisotropic dipolar interaction can give rise to s-wave scattering resonances, which are named as dipolar interaction induced resonaces (DIIR). In this letter, we study zero-temperature many-body physics of a two-component Fermi gas across a DIIR. In the low-density regime, it is very striking that the resulting pairing order parameter is a nearly isotropic singlet pairing and the physics can be well described by an s-wave resonant interaction potential with finite range corrections, despite of the anisotropic nature of dipolar interaction. The pairing energy is as strong as a unitary Fermi gas nearby a magnetic Feshbach resonance. In the high density regime, the anisotropic effect plays an important role. We find phase transitions from singlet pairing to a state with mixed singlet and triplet pairing, and then from mixed pairing to pure triplet pairing. The state with mixed pairing spontaneously breaks the time-reversal symmetry.



rate research

Read More

An imposed chemical potential gradient $A_uparrow=dmu_uparrow/dx$ on a single fermionic species (spin up) directly produces a gradient in the density $drho_uparrow/dx$ across a lattice. We study here the induced density inhomogeneity $drho_downarrow/dx$ in the second fermionic species (spin down) which results from fermionic interactions $U$, even in the absence of a chemical potential gradient $A_downarrow=0$ on that species. The magnitude of $drho_downarrow/dx$ acquired by the second species grows with $U$, while the magnitude of $drho_uparrow/dx$ remains relatively constant, that is, set only by $A_uparrow$. For a given $A_uparrow$, we find an interaction strength $U_*$ above which the two density gradients are equal in magnitude. We also evaluate the spin-spin correlations and show that, as expected, antiferromagnetism is most dominant at locations where the local density is half-filled. The spin polarization induced by sufficiently large gradients, in combination with $U$, drives ferromagnetic behavior. In the case of repulsive interactions, $drho_downarrow/dx = -drho_uparrow/dx$. A simple particle-hole transformation determines the related effect in the case of attractive interactions.
We study the role of the Dipolar-Induced Resonance (DIR) in a quasi-one-dimensional system of ultracold bosons. We first describe the effect of the DIR on two particles in a harmonic trap. Then, we consider a deep optical lattice loaded with ultracold dipolar bosons. In order to describe this system, we introduce a novel atom-dimer extended Bose-Hubbard model, which is the minimal model correctly accounting for the DIR. We analyze the impact of the DIR on the phase diagram at T=0 by exact diagonalization of a small-sized system. We show that the DIR strongly affects this phase diagram. In particular, we predict the mass density wave to occur in a narrow domain corresponding to weak nearest-neighbor interactions, and the occurrence of a collapse phase for stronger dipolar interactions.
The formation of a dense Bose-Einstein condensate in dark spin states of two-dimensional dipolar excitons is shown to be driven by a dynamical transition to the long-lived dark states. The condensate is stabilized by strong dipole-dipole interactions up to densities high enough for a dark quantum liquid to form. The persistence of dark condensation was observed in recent experiments. A model describing the non-equilibrium dynamics of externally driven coupled dark and bright condensates reproduces the step-like dependence of the exciton density on the pump power or on temperature. This unique condensate dynamics demonstrates the possibility of observing new unexpected collective phenomena in coupled condensed Bose systems, where the particle number is not conserved.
We use Quantum Monte Carlo (QMC) simulations to study the pairing mechanism in a one-dimensional fermionic system governed by the Hubbard model with attractive contact interaction and with imbalance between the two spin populations. This is done for the uniform system and also for the system confined in a harmonic trap to compare with experiments on confined ultra-cold atoms. In the uniform case we determine the phase diagram in the polarization-temperature plane and find that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is robust and persists to higher temperature for higher polarization. In the confined case, we also find that the FFLO phase is stabilized by higher polarization and that it is within the range of detection of experiments currently underway.
220 - M. Abad , M. Guilleumas , R. Mayol 2010
We propose a new scheme for observing Josephson oscillations and macroscopic quantum self-trapping phenomena in a toroidally confined Bose-Einstein condensate: a dipolar self-induced Josephson junction. Polarizing the atoms perpendicularly to the trap symmetry axis, an effective ring-shaped, double-well potential is achieved which is induced by the dipolar interaction. By numerically solving the three-dimensional time-dependent Gross-Pitaevskii equation we show that coherent tunneling phenomena such as Josephson oscillations and quantum self-trapping can take place. The dynamics in the self-induced junction can be qualitatively described by a two-mode model taking into account both s-wave and dipolar interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا