Do you want to publish a course? Click here

Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide

140   0   0.0 ( 0 )
 Added by Akira Endo
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the rf magnetoconductivity of unidirectional lateral superlattices (ULSLs) by detecting the attenuation of microwave through a coplanar waveguide placed on the surface. ULSL samples with the principal axis of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave electric field are examined. For low microwave power, we observe expected anisotropic behavior of the commensurability oscillations (CO), with CO in samples S_perp and S_|| dominated by the diffusion and the collisional contributions, respectively. Amplitude modulation of the Shubnikov-de Haas oscillations is observed to be more prominent in sample S_||. The difference between the two samples is washed out with the increase of the microwave power, letting the diffusion contribution govern the CO in both samples. The failure of the intended directional selectivity in the conductivity measured with high microwave power is interpreted in terms of large-angle electron-phonon scattering.



rate research

Read More

212 - Akira Endo , Shingo Katsumoto , 2021
We have observed commensurability oscillations (CO) in the Hall resistance $R_{yx}$ of a unidirectional lateral superlattice (ULSL). The CO, having small amplitudes ($sim$ 1 $Omega$) and being superposed on a roughly three-orders of magnitude larger background, are obtained by directly detecting the difference in $R_{yx}$ between the ULSL area and the adjacent unmodulated two-dimensional electron gas area, and then extracting the odd part with respect to the magnetic field. The CO thus obtained are compared with a theoretical calculation and turn out to have the amplitude much smaller than the theoretical prediction. The implication of the smaller-than-predicted CO in $R_{yx}$ on the thermoelectric power of ULSL is briefly discussed.
We report the experimental observation of commensurability oscillations (COs) in 1D graphene superlattices. The widely tunable periodic potential modulation in hBN encapsulated graphene is generated via the interplay of nanopatterned few layer graphene acting as a local bottom gate and a global Si back gate. The longitudinal magneto-resistance shows pronounced COs, when the sample is tuned into the unipolar transport regime. We observe up to six CO minima, providing evidence for a long mean free path despite the potential modulation. Comparison to existing theories shows that small angle scattering is dominant in hBN/graphene/hBN heterostructures. We observe robust COs persisting to temperature exceeding $T=150$ K. At high temperatures, we find deviations from the predicted $T$-dependence, which we ascribe to electron-electron scattering.
Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in $mathrm{Ga[Al]As}$ heterostructures. The two-dimensional electron gases exposed to these superlattices are characterized by magnetotransport experiments in vanishing average perpendicular magnetic fields. Despite the absence of closed orbits, the diagonal magnetoresistivity in the direction perpendicular to the magnetic modulation shows pronounced classical resonances. They are located at magnetic fields where snake trajectories exist which are quasi-commensurate with the antidot lattice. The diagonal magnetoresistivity in the direction of the magnetic modulation increases sharply above a threshold magnetic field and shows no fine structure. The experimental results are interpreted with the help of numerical simulations based on the semiclassical Kubo model.
We measure graphene coplanar waveguides from direct current (DC) to 13.5GHz and show that the apparent resistance (in the presence of parasitic impedances) has an quadratic frequency dependence, but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current conductivity is the same as the DC value and the imaginary part~0. The graphene channel is modelled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time~2.1ps, highlighting the influence of alternating current (AC) electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analogue field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.
We present fully quantum-mechanical magnetotransport calculations for short-period lateral superlattices with one-dimensional electrostatic modulation. A non-perturbative treatment of both magnetic field and modulation potential proves to be necessary to reproduce novel quantum oscillations in the magnetoresistance found in recent experiments in the resistance component parallel to the modulation potential. In addition, we predict oscillations of opposite phase in the component perpendicular to the modulation not yet observed experimentally. We show that the new oscillations originate from the magnetic miniband structure in the regime of overlapping minibands.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا