Do you want to publish a course? Click here

Physical Realizability of Multi-Level Quantum Systems

214   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

This paper considers the physical realizability condition for multi-level quantum systems having polynomial Hamiltonian and multiplicative coupling with respect to several interacting boson fields. Specifically, it generalizes a recent result the authors developed for two-level quantum systems. For this purpose, the algebra of SU(n) was incorporated. As a consequence, the obtained condition is given in terms of the structure constants of SU(n).



rate research

Read More

Coherent feedback control considers purely quantum controllers in order to overcome disadvantages such as the acquisition of suitable quantum information, quantum error correction, etc. These approaches lack a systematic characterization of quantum realizability. Recently, a condition characterizing when a system described as a linear stochastic differential equation is quantum was developed. Such condition was named physical realizability, and it was developed for linear quantum systems satisfying the quantum harmonic oscillator canonical commutation relations. In this context, open two-level quantum systems escape the realm of the current known condition. When compared to linear quantum system, the challenges in obtaining such condition for such systems radicate in that the evolution equation is now a bilinear quantum stochastic differential equation and that the commutation relations for such systems are dependent on the system variables. The goal of this paper is to provide a necessary and sufficient condition for the preservation of the Pauli commutation relations, as well as to make explicit the relationship between this condition and physical realizability.
This paper aims to provide conditions under which a quantum stochastic differential equation can serve as a model for interconnection of a bilinear system evolving on an operator group SU(2) and a linear quantum system representing a quantum harmonic oscillator. To answer this question we derive algebraic conditions for the preservation of canonical commutation relations (CCRs) of quantum stochastic differential equations (QSDE) having a subset of system variables satisfying the harmonic oscillator CCRs, and the remaining variables obeying the CCRs of SU(2). Then, it is shown that from the physical realizability point of view such QSDEs correspond to bilinear-linear quantum cascades.
Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We show that general implementations would require the complete solution of the underlying unitary dynamics, and sophisticated reservoir engineering, thus weakening the benefits of experimental investigations.
The goal of this paper is to provide conditions under which a quantum stochastic differential equation (QSDE) preserves the commutation and anticommutation relations of the SU(n) algebra, and thus describes the evolution of an open n-level quantum system. One of the challenges in the approach lies in the handling of the so-called anomaly coefficients of SU(n). Then, it is shown that the physical realizability conditions recently developed by the authors for open n-level quantum systems also imply preservation of commutation and anticommutation relations.
A periodically driven quantum system with avoided-level crossing experiences both non-adiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the systems occupation probabilities. For qubits, with repelling energy levels, such interference, named after Landau-Zener-Stuckelberg-Majorana, displays arc-shaped resonance lines. We demonstrate that in the case of a multi-level system with an avoided-level crossing of the two lower levels, the shape of the resonances can change from convex arcs to concave heart-shaped and harp-shaped resonance lines. In this way, the shape of such resonance fringes is defined by the whole spectrum, providing insight on the slow-frequency system spectroscopy. As a particular example, we consider this for valley-orbit silicon quantum dots.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا