No Arabic abstract
In this chapter it is shown how the introduction of a fundamental constant of nature with dimensions of acceleration into the theory of gravity makes it possible to extend gravity in a very consistent manner.
We calculate the mass distribution of Primordial Black Holes (PBHs) produced during metric preheating. After inflation, the oscillations of the inflaton at the bottom of its potential source a parametric resonant instability for small-scale scalar perturbations, that may collapse into black holes. After reviewing in a pedagogical way different techniques that have been developed in the literature to compute mass distributions of PBHs, we focus on the excursion-set approach. We derive a Volterra integral equation that is free of a singularity sometimes encountered, and apply it to the case of metric preheating. We find that if the energy density at which the instability stops, $rho_Gamma$, is sufficiently smaller than the one at which inflation ends, $rho_mathrm{end}$, namely if $rho_Gamma^{1/4}/rho_mathrm{end}^{1/4}< 10^{-5}(rho_mathrm{end}^{1/4}/10^{16}mathrm{GeV})^{3/2}$, then PBHs dominate the universe content at the end of the oscillatory phase. This confirms the previous analysis of arXiv:1907.04236 . By properly accounting for the cloud-in-cloud mechanism, we find that the mass distribution is more suppressed at low masses than previously thought, and peaks several orders of magnitude above the Hubble mass at the end of inflation. The peak mass ranges from $10$ g to stellar masses, giving rise to different possible cosmological effects that we discuss.
In this work, we use an observational approach and dynamical system analysis to study the cosmological model recently proposed by Saridakis (2020), which is based on the modification of the entropy-area black hole relation proposed by Barrow (2020). The Friedmann equations governing the dynamics of the Universe under this entropy modification can be calculated through the gravity-thermodynamics conjecture. We investigate two models, one considering only a matter component and the other including matter and radiation, which have new terms compared to the standard model sourcing the late cosmic acceleration. A Bayesian analysis is performed in which we use five cosmological observations (observational Hubble data, type Ia supernovae, HII galaxies, strong lensing systems, and baryon acoustic oscillations) to constrain the free parameters of both models. From a joint analysis, we obtain constraints that are consistent with the standard cosmological paradigm within $2sigma$ confidence level. In addition, a complementary dynamical system analysis using local and global variables is developed which allows obtaining a qualitative description of the cosmology. As expected, we found that the dynamical equations have a de Sitter solution at late times.
Cosmological constraints are usually derived under the assumption of a $6$ parameters $Lambda$-CDM theoretical framework or simple one-parameter extensions. In this paper we present, for the first time, cosmological constraints in a significantly extended scenario, varying up to $12$ cosmological parameters simultaneously, including the sum of neutrino masses, the neutrino effective number, the dark energy equation of state, the gravitational waves background and the running of the spectral index of primordial perturbations. Using the latest Planck 2015 data release (with polarization) we found no significant indication for extensions to the standard $Lambda$-CDM scenario, with the notable exception of the angular power spectrum lensing amplitude, $A_{rm lens}$ that is larger than the expected value at more than two standard deviations even when combining the Planck data with BAO and supernovae type Ia external datasets. In our extended cosmological framework, we find that a combined Planck+BAO analysis constrains the value of the r.m.s. density fluctuation parameter to $sigma_8=0.781_{-0.063}^{+0.065}$ at $95 %$ c.l., helping to relieve the possible tensions with the CFHTlenS cosmic shear survey. We also find a lower value for the reionization optical depth $tau=0.058_{-0.043}^{+0.040}$ at $95$ % c.l. respect to the one derived under the assumption of $Lambda$-CDM. The scalar spectral index $n_S$ is now compatible with a Harrison-Zeldovich spectrum to within $2.5$ standard deviations. Combining the Planck dataset with the HST prior on the Hubble constant provides a value for the equation of state $w < -1$ at more than two standard deviations while the neutrino effective number is fully compatible with the expectations of the standard three neutrino framework.
We discuss the possibility to implement a viscous cosmological model, attributing to the dark matter component a behaviour described by bulk viscosity. Since bulk viscosity implies negative pressure, this rises the possibility to unify the dark sector. At the same time, the presence of dissipative effects may alleviate the so called small scale problems in the $Lambda$CDM model. While the unified viscous description for the dark sector does not lead to consistent results, the non-linear behaviour indeed improves the situation with respect to the standard cosmological model.
If observations confirm BICEP2s claim of a tensor-scalar ratio $rapprox 0.2$ on CMB scales, then the inflationary consistency relation $n_{t}=-r/8$ predicts a small negative value for the tensor spectral index $n_t$. We show that future CMB polarization experiments should be able to confirm this prediction at several sigma. We also show how to properly extend the consistency relation to solar system scales, where the primordial gravitational wave density $Omega_{gw}$ could be measured by proposed experiments such as the Big Bang Observer. This would provide a far more stringent test of the consistency relation and access much more detailed information about the early universe.