No Arabic abstract
The PHENIX experiment has measured the production of neutral pions in Au+Au collisions at sqrt(s_NN)=200 GeV. The new data offer a fourfold increase in recorded luminosity, providing higher precision and a larger reach in transverse momentum, p_T, to 20 GeV/c. The production ratio of eta/pi^0 is 0.46+/-0.01(stat)+/-0.05(syst), constant with p_T and collision centrality. The observed ratio is consistent with earlier measurements, as well as with the p+p and d+Au values. The production of pi^0 is suppressed by a factor of 5, as in earlier findings. However, with the improved statistical precision a small but significant rise of the nuclear modification factor, R_AA, vs p_T, with a slope of 0.0106+/-^(0.0034)_(0.0029)[GeV/c]^-1, is discernible in central collisions. A phenomenological extraction of the average fractional parton energy loss shows a decrease with increasing p_T. To study the path length dependence of suppression, the pi^0 yield was measured at different angles with respect to the event plane; a strong azimuthal dependence of the pi^0 R_AA is observed. The data are compared to theoretical models of parton energy loss as a function of the path length, L, in the medium. Models based on pQCD are insufficient to describe the data, while a hybrid model utilizing pQCD for the hard interactions and AdS/CFT for the soft interactions is consistent with the data.
Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.
One of the most striking results is the large elliptic flow ($v_2$) at RHIC. Detailed mass and transverse momentum dependence of elliptic flow are well described by ideal hydrodynamic calculations for $p_{mathrm{T}} < $ 1 GeV/c, and by parton coalescence/recombination picture for $p_{mathrm{T}} = 2 - 6$ GeV/c. The systematic error on $v_2$ is dominated by so-called non-flow effects, which is the correlation not originated from reaction plane. It is crucial to understand and reduce the systematic error from non-flow effects in order to understand the underlying collision dynamics. In this paper, we present the centrality dependence of $v_2$ with respect to the first harmonic event plane at ZDC-SMD ($v_2${ZDC-SMD}) in Au + Au collisions at $sqrt{s_{NN}}$ = 200 GeV. Large rapidity gap ($|Deltaeta| > 6$) between midrapidity and the ZDC could enable us to minimize possible non-flow contributions. We compare the results of $v_2${ZDC-SMD} with $v_2${BBC}, which is measured by event plane determined at $|eta| = 3.1 - 3.9$. Possible non-flow contributions in those results will be discussed.
We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.
Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < pT < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from di-jets in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing pT, the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side distribution can be divided into a partially suppressed head region centered at Delta phi ~ pi, and an enhanced shoulder region centered at Delta phi ~ pi pm 1:1. The pT spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger pT . The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to pT < 4 GeV/c, above which both the dihadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for pT ge 5GeV and a medium-induced component which is important for pT le 4 GeV/c. We also quantify the role of jets at intermediate and low pT through the yield of jet-induced pairs in comparison to binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the pT magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching; the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower pT.
Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.