Do you want to publish a course? Click here

Dihadron azimuthal correlations in Au+Au collisions at sqrt(s_NN)=200 GeV

157   0   0.0 ( 0 )
 Added by Brant M. Johnson
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < pT < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from di-jets in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing pT, the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side distribution can be divided into a partially suppressed head region centered at Delta phi ~ pi, and an enhanced shoulder region centered at Delta phi ~ pi pm 1:1. The pT spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger pT . The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to pT < 4 GeV/c, above which both the dihadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for pT ge 5GeV and a medium-induced component which is important for pT le 4 GeV/c. We also quantify the role of jets at intermediate and low pT through the yield of jet-induced pairs in comparison to binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the pT magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching; the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower pT.



rate research

Read More

The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in $d$$+$Au collisions at $sqrt{s_{_{NN}}}$=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central $p$$+$Pb collisions at $sqrt{s_{_{NN}}}$=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in $d$$+$Au collisions compared to those seen in $p$$+$Pb collisions at the LHC. The larger extracted $v_2$ values in $d$$+$Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from $p$$+$Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.
The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are found to be consistent between the two meson species over the measured p_T range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is systematically larger in central collisions, which may reflect the combined effects of fluctuations in the initial collision geometry and finite viscosity in the evolving medium.
206 - B.Alver , et al 2007
This paper presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v_2 in Au+Au collisions at sqrt(s_NN) = 200GeV as a function of collision centrality. The relative non-statistical fluctuations of the v_2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (non-flow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.
We report the measurement of direct photons at midrapidity in Au+Au collisions at sqrt{s_NN} = 200 GeV. The direct photon signal was extracted for the transverse-momentum range of 4 GeV/c < p_T < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive-photon sample. The direct-photon nuclear-modification factor R_AA was calculated as a function of p_T for different Au+Au collision centralities using the measured p+p direct-photon spectrum and compared to theoretical predictions. R_AA was found to be consistent with unity for all centralities over the entire measured p_T range. Theoretical models that account for modifications of initial-direct-photon production due to modified-parton-distribution functions in Au and the different isospin composition of the nuclei, predict a modest change of R_AA from unity and are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.
68 - Tatsuya Chujo 2003
We report the recent results of proton and anti-proton yields as a function of centrality and p_T in Au+Au collisions at sqrt(s_NN) = 200 GeV, measured by the PHENIX experiment at RHIC. In central collisions at intermediate transverse momenta (1.5 < p_T < 4.5 GeV/c) a significant fraction of all produced particles is protons and anti-protons. They show a different scaling behavior from that of pions. The pbar/pi and p/pi ratios are enhanced compared to peripheral Au+Au, p+p and e+e- collisions. This enhancement is limited to p_T < 5 GeV/c as deduced from the ratio of charged hadrons to pi^0 measured in the range 1.5 < p_T < 9 GeV/c.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا