Do you want to publish a course? Click here

Voter models with conserved dynamics

154   0   0.0 ( 0 )
 Added by Tobias Galla
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a modified voter model with locally conserved magnetization and investigate its phase ordering dynamics in two dimensions in numerical simulations. Imposing a local constraint on the dynamics has the surprising effect of speeding up the phase ordering process. The system is shown to exhibit a scaling regime characterized by algebraic domain growth, at odds with the logarithmic coarsening of the standard voter model. A phenomenological approach based on cluster diffusion and similar to Smoluchowski ripening correctly predicts the observed scaling regime. Our analysis exposes unexpected complexity in the phase ordering dynamics without thermodynamic potential.



rate research

Read More

By considering three different spin models belonging to the generalized voter class for ordering dynamics in two dimensions [I. Dornic, textit{et al.} Phys. Rev. Lett. textbf{87}, 045701 (2001)], we show that they behave differently from the linear voter model when the initial configuration is an unbalanced mixture up and down spins. In particular we show that for nonlinear voter models the exit probability (probability to end with all spins up when starting with an initial fraction $x$ of them) assumes a nontrivial shape. The change is traced back to the strong nonconservation of the average magnetization during the early stages of dynamics. Also the time needed to reach the final consensus state $T_N(x)$ has an anomalous nonuniversal dependence on $x$.
115 - R. A. Blythe 2010
We study the voter model and related random-copying processes on arbitrarily complex network structures. Through a representation of the dynamics as a particle reaction process, we show that a quantity measuring the degree of order in a finite system is, under certain conditions, exactly governed by a universal diffusion equation. Whenever this reduction occurs, the details of the network structure and random-copying process affect only a single parameter in the diffusion equation. The validity of the reduction can be established with considerably less information than one might expect: it suffices to know just two characteristic timescales within the dynamics of a single pair of reacting particles. We develop methods to identify these timescales, and apply them to deterministic and random network structures. We focus in particular on how the ordering time is affected by degree correlations, since such effects are hard to access by existing theoretical approaches.
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to disentangle the effects of the stochastic process itself relative to the network structure. We introduce a process with two steps, one that selects a pair of interacting nodes and one that determines the direction of interaction as a function of the degrees of the two nodes and a parameter $alpha$ which sets the likelihood of the higher degree node giving its state. Traditional voter model behavior can be recovered within the model. We find that on a complete bipartite network, the traditional voter model is the fastest process. On a random network with power law degree distribution, we observe two regimes. For modest values of $alpha$, exit time is dominated by diffusive drift of the system state, but as the high nodes become more influential, the exit time becomes becomes dominated by frustration effects. For certain selection processes, a short intermediate regime occurs where exit occurs after exponential mixing.
We study the fluctuations of the Gaussian model, with conservation of the order parameter, evolving in contact with a thermal bath quenched from inverse temperature $beta _i$ to a final one $beta _f$. At every time there exists a critical value $s_c(t)$ of the variance $s$ of the order parameter per degree of freedom such that the fluctuations with $s>s_c(t)$ are characterized by a macroscopic contribution of the zero wavevector mode, similarly to what occurs in an ordinary condensation transition. We show that the probability of fluctuations with $s<inf_t [s_c(t)]$, for which condensation never occurs, rapidly converges towards a stationary behavior. By contrast, the process of populating the zero wavevector mode of the variance, which takes place for $s>inf _t [s_c(t)]$, induces a slow non-equilibrium dynamics resembling that of systems quenched across a phase transition.
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis-Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا