No Arabic abstract
By considering three different spin models belonging to the generalized voter class for ordering dynamics in two dimensions [I. Dornic, textit{et al.} Phys. Rev. Lett. textbf{87}, 045701 (2001)], we show that they behave differently from the linear voter model when the initial configuration is an unbalanced mixture up and down spins. In particular we show that for nonlinear voter models the exit probability (probability to end with all spins up when starting with an initial fraction $x$ of them) assumes a nontrivial shape. The change is traced back to the strong nonconservation of the average magnetization during the early stages of dynamics. Also the time needed to reach the final consensus state $T_N(x)$ has an anomalous nonuniversal dependence on $x$.
We propose a modified voter model with locally conserved magnetization and investigate its phase ordering dynamics in two dimensions in numerical simulations. Imposing a local constraint on the dynamics has the surprising effect of speeding up the phase ordering process. The system is shown to exhibit a scaling regime characterized by algebraic domain growth, at odds with the logarithmic coarsening of the standard voter model. A phenomenological approach based on cluster diffusion and similar to Smoluchowski ripening correctly predicts the observed scaling regime. Our analysis exposes unexpected complexity in the phase ordering dynamics without thermodynamic potential.
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to disentangle the effects of the stochastic process itself relative to the network structure. We introduce a process with two steps, one that selects a pair of interacting nodes and one that determines the direction of interaction as a function of the degrees of the two nodes and a parameter $alpha$ which sets the likelihood of the higher degree node giving its state. Traditional voter model behavior can be recovered within the model. We find that on a complete bipartite network, the traditional voter model is the fastest process. On a random network with power law degree distribution, we observe two regimes. For modest values of $alpha$, exit time is dominated by diffusive drift of the system state, but as the high nodes become more influential, the exit time becomes becomes dominated by frustration effects. For certain selection processes, a short intermediate regime occurs where exit occurs after exponential mixing.
We study the voter model and related random-copying processes on arbitrarily complex network structures. Through a representation of the dynamics as a particle reaction process, we show that a quantity measuring the degree of order in a finite system is, under certain conditions, exactly governed by a universal diffusion equation. Whenever this reduction occurs, the details of the network structure and random-copying process affect only a single parameter in the diffusion equation. The validity of the reduction can be established with considerably less information than one might expect: it suffices to know just two characteristic timescales within the dynamics of a single pair of reacting particles. We develop methods to identify these timescales, and apply them to deterministic and random network structures. We focus in particular on how the ordering time is affected by degree correlations, since such effects are hard to access by existing theoretical approaches.
A symmetry breaking (SB) involves an abrupt change in the set of microstates that a system can explore. This change has unavoidable thermodynamic implications. According to Boltzmanns microscopic interpretation of entropy, a shrinkage of the set of compatible states implies a decrease of entropy, which eventually needs to be compensated by dissipation of heat and consequently requires work. Examples are the compression of a gas and the erasure of information. On the other hand, in a spontaneous SB, the available phase space volume changes without the need for work, yielding an apparent decrease of entropy. Here we show that this decrease of entropy is a key ingredient in the Szilard engine and Landauers principle and report on a direct measurement of the entropy change along SB transitions in a Brownian particle. The SB is induced by a bistable potential created with two optical traps. The experiment confirms theoretical results based on fluctuation theorems, allows us to reproduce the Szilard engine extracting energy from a single thermal bath, and shows that the signature of a SB in the energetics is measurable, providing new methods to detect, for example, the coexistence of metastable states in macromolecules.
.Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are differe