Do you want to publish a course? Click here

Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Central Density

202   0   0.0 ( 0 )
 Added by Brendan Krueger
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study exploring a systematic effect on the brightness of type Ia supernovae using numerical models that assume the single-degenerate paradigm. Our investigation varied the central density of the progenitor white dwarf at flame ignition, and considered its impact on the explosion yield, particularly the production and distribution of radioactive Ni-56, which powers the light curve. We performed a suite of two-dimensional simulations with randomized initial conditions, allowing us to characterize the statistical trends that we present. The simulations indicate that production of Fe-group material is statistically independent of progenitor central density, but the mass of stable Fe-group isotopes is tightly correlated with central density, with a decrease in the production of Ni-56 at higher central densities. These results imply progenitors with higher central densities produce dimmer events. We provide details of the post-explosion distribution of Ni-56 in the models, including the lack of a consistent centrally-located deficit of Ni-56, which may be compared to observed remnants. By performing a self-consistent extrapolation of our model yields and considering the main-sequence lifetime of the progenitor star and the elapsed time between the formation of the white dwarf and the onset of accretion, we develop a brightness-age relation that improves our prediction of the expected trend for single degenerates and we compare this relation with observations.

rate research

Read More

132 - Aaron P. Jackson 2010
We explore the effects of the deflagration to detonation transition (DDT) density on the production of Ni-56 in thermonuclear supernova explosions (type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear supernovae with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of Ni-56 masses to those inferred from observations. Within this framework, we utilize a more realistic simmered white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of Ni-56 and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range 1-3x10^7 g/cc. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 +/- 0.004 solar masses for a 1 solar metallicity increase evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 +/- 0.004 solar mass decrease in the Ni-56 yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.
Type Ia supernovae are bright stellar explosions thought to occur when a thermonuclear runaway consumes roughly a solar mass of degenerate stellar material. These events produce and disseminate iron-peak elements, and properties of their light curves allow for standardization and subsequent use as cosmological distance indicators. The explosion mechanism of these events remains, however, only partially understood. Many models posit the explosion beginning with a deflagration born near the center of a white dwarf that has gained mass from a stellar companion. In order to match observations, models of this single-degenerate scenario typically invoke a subsequent transition of the (subsonic) deflagration to a (supersonic) detonation that rapidly consumes the star. We present an investigation into the systematics of thermonuclear supernovae assuming this paradigm. We utilize a statistical framework for a controlled study of two-dimensional simulations of these events from randomized initial conditions. We investigate the effect of the composition and thermal history of the progenitor on the radioactive yield, and thus brightness, of an event. Our results offer an explanation for some observed trends of mean brightness with properties of the host galaxy.
We present a theoretical framework for formal study of systematic effects in Supernovae Type Ia (SN Ia) that utilizes 2-d simulations to implement a form of the deflagration-detonation transition (DDT) explosion scenario. The framework is developed from a randomized initial condition that leads to a sample of simulated SN Ia whose Ni56 masses have a similar average and range to those observed, and have many other modestly realistic features such as the velocity extent of intermediate mass elements. The intended purpose is to enable statistically well-defined studies of both physical and theoretical parameters of the SN Ia explosion simulation. We present here a thorough description of the outcome of the SN Ia explosions produced by our current simulations. A first application of this framework is utilized to study the dependence of the SN Ia on the Ne22 content, which is known to be directly influenced by the progenitor stellar populations metallicity. Our study is very specifically tailored to measure how the Ne22 content influences the competition between the rise of plumes of burned material and the expansion of the star before these plumes reach DDT conditions. This competition controls the amount of material in nuclear statistical equilibrium (NSE) and therefore Ni56 produced by setting the density at which nucleosynthesis takes place during the detonation phase of the explosion. Although the outcome following from any particular ignition condition can change dramatically with Ne22 content, with a sample of 20 ignition conditions we find that the systematic change in the expansion of the star prior to detonation is not large enough to compete with the dependence on initial neutron excess discussed by Timmes, Brown & Truran (2003). (Abridged)
Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite the highly successful use of these events in this capacity, many fundamental questions remain. Contemporary research investigates how properties of the progenitor system that follow from the host galaxy such as composition and age influence the brightness of an event with the goal of better understanding and assessing the intrinsic scatter in the brightness. We provide an overview of these supernovae and proposed progenitor systems, all of which involve one or more compact stars known as white dwarfs. We describe contemporary research investigating how the composition and structure of the progenitor white dwarf systematically influences the explosion outcome assuming the progenitor is a single white dwarf that has gained mass from a companion. We present results illustrating some of these systematic effects from our research.
There is compelling evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Ye at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi nuclear statistical equilibrium are preserved during the subsequent freezeout. This allows one to potential recovery of Ye at explosion from the abundances recovered from an observed spectra. We show that measurement of 28Si, 32S, 40Ca, and 54Fe abundances can be used to construct Ye in the silicon rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Ye to 6 percent. This is because these isotopes dominate the composition of silicon-rich material and iron rich material in quasi nuclear statistical equilibrium. Analytical analysis shows that the 28Si abundance is insensitive to Ye, the 32S abundance has a nearly linear trend with Ye, and the 40Ca abundance has a nearly quadratic trend with Ye. We verify these trends with post-processing of 1D models and show that these trends are reflected in model synthetic spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا