Do you want to publish a course? Click here

Critical Behavior of the Three-Dimensional Ising model with Anisotropic Bond Randomness at the Ferromagnetic-Paramagnetic Transition Line

146   0   0.0 ( 0 )
 Added by Anastasios Malakis
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the $pm J$ three-dimensional Ising model with a spatially uniaxially anisotropic bond randomness on the simple cubic lattice. The $pm J$ random exchange is applied in the $xy$ planes, whereas in the z direction only a ferromagnetic exchange is used. After sketching the phase diagram and comparing it with the corresponding isotropic case, the system is studied, at the ferromagnetic-paramagnetic transition line, using parallel tempering and a convenient concentration of antiferromagnetic bonds ($p_z=0 ; p_{xy}=0.176$). The numerical data point out clearly to a second-order ferromagnetic-paramagnetic phase transition belonging in the same universality class with the 3d random Ising model. The smooth finite-size behavior of the effective exponents describing the peaks of the logarithmic derivatives of the order parameter provides an accurate estimate of the critical exponent $1/ u=1.463(3)$ and a collapse analysis of magnetization data gives an estimate $beta/ u=0.516(7)$. These results, are in agreement with previous studies and in particular with those of the isotropic $pm J$ three-dimensional Ising at the ferromagnetic-paramagnetic transition line, indicating the irrelevance of the introduced anisotropy.



rate research

Read More

313 - A. Malakis , N.G. Fytas 2008
The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two implementations of this scheme are utilized. The random fields are obtained from a bimodal discrete $(pmDelta)$ distribution, and we study the model for various values of the disorder strength $Delta$, $Delta=0.5, 1, 1.5$ and 2, on cubic lattices with linear sizes $L=4-24$. We extract information for the probability distributions of the specific heat peaks over samples of random fields. This permits us to obtain the phase diagram and present the finite-size behavior of the specific heat. The question of saturation of the specific heat is re-examined and it is shown that the open problem of universality for the random-field Ising model is strongly influenced by the lack of self-averaging of the model. This property appears to be substantially depended on the disorder strength.
74 - P.E. Berche 2002
We investigate by Monte Carlo simulations the critical properties of the three-dimensional bond-diluted Ising model. The phase diagram is determined by locating the maxima of the magnetic susceptibility and is compared to mean-field and effective-medium approximations. The calculation of the size-dependent effective critical exponents shows the competition between the different fixed points of the model as a function of the bond dilution.
We investigated the Ising model on a square lattice with ferro and antiferromagnetic interactions modulated by the quasiperiodic Octonacci sequence in both directions of the lattice. We have applied the Replica Exchange Monte Carlo (Parallel Tempering) technique to calculate the thermodynamic quantities of the system. We obtained the order parameter, the associated magnetic susceptibility ($chi$) and the specific heat $(c)$ in order to characterize the universality class of the phase transition. Also, we use the finite size scaling method to obtain the critical temperature of the system and the critical exponents $beta$, $gamma$ and $ u$. In the low temperature limit we have obtained a continuous transition with critical temperature around $T_{c} approx 1.413$. The system obeys the Ising universality class with logarithmic corrections. We found estimatives for the correction exponents $hat{beta}$, $hat{gamma}$ and $hat{lambda}$ by using the finite size scaling technique.
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square model with nearest- and next-nearest-neighbor competing interactions and the corresponding version of the simple Ising model are studied and their general universality aspects are inspected by a detailed finite-size scaling (FSS) analysis. We find that, the random bond SAF model obeys weak universality, hyperscaling, and exhibits a strong saturating behavior of the specific heat due to the competing nature of interactions. On the other hand, for the random Ising model we encounter some difficulties for a definite discrimination between the two well-known scenarios of the logarithmic corrections versus the weak universality. Yet, a careful FSS analysis of our data favors the field-theoretically predicted logarithmic corrections.
208 - W. Selke , L.N. Shchur 2009
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next--nearest neighbors, along only one diagonal, is determined using Monte Carlo techniques. In the phase diagram a disorder line occurs separating regions with monotonically decaying and with oscillatory spin--spin correlations. Findings on the variation of the critical cumulant with the ratio of the two interaction strengths are compared to related recent results based on renormalization group calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا