No Arabic abstract
The practical construction of scalable quantum computer hardware capable of executing non-trivial quantum algorithms will require the juxtaposition of different types of quantum systems. We analyze a modular ion trap quantum computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits. Local entangling quantum gates between qubit memories within a single register are accomplished using natural interactions between the qubits, and entanglement between separate registers is completed via a probabilistic photonic interface between qubits in different registers, even over large distances. We show that this architecture can be made fault-tolerant, and demonstrate its viability for fault-tolerant execution of modest size quantum circuits.
This paper presents the definition and implementation of a quantum computer architecture to enable creating a new computational device - a quantum computer as an accelerator. In this paper, we present explicitly the idea of a quantum accelerator which contains the full stack of the layers of an accelerator. Such a stack starts at the highest level describing the target application of the accelerator. The next layer abstracts the quantum logic outlining the algorithm that is to be executed on the quantum accelerator. In our case, the logic is expressed in the universal quantum-classical hybrid computation language developed in the group, called OpenQL, which visualised the quantum processor as a computational accelerator. The OpenQL compiler translates the program to a common assembly language, called cQASM, which can be executed on a quantum simulator. The cQASM represents the instruction set that can be executed by the micro-architecture implemented in the quantum accelerator. In a subsequent step, the compiler can convert the cQASM to generate the eQASM, which is executable on a particular experimental device incorporating the platform-specific parameters. This way, we are able to distinguish clearly the experimental research towards better qubits, and the industrial and societal applications that need to be developed and executed on a quantum device. The first case offers experimental physicists with a full-stack experimental platform using realistic qubits with decoherence and error-rates while the second case offers perfect qubits to the quantum application developer, where there is no decoherence nor error-rates. We conclude the paper by explicitly presenting three examples of full-stack quantum accelerators, for an experimental superconducting processor, for quantum accelerated genome sequencing and for near-term generic optimisation problems based on quantum heuristic approaches.
Photonic quantum computing is one of the leading approaches to universal quantum computation. However, large-scale implementation of photonic quantum computing has been hindered by its intrinsic difficulties, such as probabilistic entangling gates for photonic qubits and lack of scalable ways to build photonic circuits. Here we discuss how to overcome these limitations by taking advantage of two key ideas which have recently emerged. One is a hybrid qubit-continuous variable approach for realizing a deterministic universal gate set for photonic qubits. The other is time-domain multiplexing technique to perform arbitrarily large-scale quantum computing without changing the configuration of photonic circuits. These ideas together will enable scalable implementation of universal photonic quantum computers in which hardware-efficient error correcting codes can be incorporated. Furthermore, all-optical implementation of such systems can increase the operational bandwidth beyond THz in principle, utimately enabling large-scale fault-tolerant universal quantum computers with ultra-high operation frequency.
In this work, we present the design of a superconducting, microwave quantum state router which can realize all-to-all couplings among four quantum modules. Each module consists of a single transmon, readout mode, and communication mode coupled to the router. The router design centers on a parametrically driven, Josephson-junction based three-wave mixing element which generates photon exchange among the modules communication modes. We first demonstrate SWAP operations among the four communication modes, with an average full-SWAP time of 760 ns and average inter-module gate fidelity of 0.97, limited by our modes coherences. We also demonstrate photon transfer and pairwise entanglement between the modules qubits, and parallel operation of simultaneous SWAP gates across the router. These results can readily be extended to faster and higher fidelity router operations, as well as scaled to support larger networks of quantum modules.
Quantum correlation and its measurement are essential in exploring fundamental quantum physics problems and developing quantum enhanced technologies. Quantum correlation may be generated and manipulated in different spaces, which demands different measurement approaches corresponding to position, time, frequency and polarization of quantum particles. In addition, after early proof-of-principle demonstrations, it is of great demand to measure quantum correlation in a Hilbert space large enough for real quantum applications. When the number of modes goes up to several hundreds, it becomes economically unfeasible for single-mode addressing and also extremely challenging for processing correlation events with hardware. Here we present a general and large-scale measurement approach of Correlation on Spatially-mapped Photon-Level Image (COSPLI). The quantum correlations in other spaces are mapped into the position space and are captured by single-photon-sensitive imaging system. Synthetic methods are developed to suppress noises so that single-photon registrations can be faithfully identified in images. We eventually succeed in retrieving all the correlations with big-data technique from tens of millions of images. We demonstrate our COSPLI by measuring the joint spectrum of parametric down-conversion photons. Our approach provides an elegant way to observe the evolution results of large-scale quantum systems, representing an innovative and powerful tool added into the platform for boosting quantum information processing.
The trapped-ion QCCD (quantum charge-coupled device) architecture proposal lays out a blueprint for a universal quantum computer. The design begins with electrodes patterned on a two-dimensional surface configured to trap multiple arrays of ions (or ion crystals). Communication within the ion crystal network allows for the machine to be scaled while keeping the number of ions in each crystal to a small number, thereby preserving the low error rates demonstrated in trapped-ion experiments. By proposing to communicate quantum information by moving the ions through space to interact with other distant ions, the architecture creates a quantum computer endowed with full-connectivity. However, engineering this fully-connected computer introduces a host of difficulties that have precluded the architecture from being fully realized in the twenty years since its proposal. Using a Honeywell cryogenic surface trap, we report on the integration of all necessary ingredients of the QCCD architecture into a programmable trapped-ion quantum computer. Using four and six qubit circuits, the system level performance of the processor is quantified by the fidelity of a teleported CNOT gate utilizing mid-circuit measurement and a quantum volume measurement of $2^6=64$. By demonstrating that the low error rates achievable in small ion crystals can be successfully integrated with a scalable trap design, parallel optical delivery, and fast ion transport, the QCCD architecture is shown to be a viable path toward large quantum computers. Atomic ions provide perfectly identical, high-fidelity qubits. Our work shows that the QCCD architecture built around these qubits will provide high performance quantum computers, likely enabling important near-term demonstrations such as quantum error correction and quantum advantage.