Do you want to publish a course? Click here

A Trapped Field of >3T in Bulk MgB2 Fabricated by Uniaxial Hot Pressing

113   0   0.0 ( 0 )
 Added by Dr J. H. Durrell
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A trapped field of over 3 T has been measured at 17.5 K in a magnetised stack of two disc-shaped bulk MgB2 superconductors of diameter 25 mm and thickness 5.4 mm. The bulk MgB2 samples were fabricated by uniaxial hot pressing, which is a readily scalable, industrial technique, to 91% of their maximum theoretical density. The macroscopic critical current density derived from the trapped field data using the Biot-Savart law is consistent with the measured local critical current density. From this we conclude that critical current density, and therefore trapped field performance, is limited by the flux pinning available in MgB2, rather than by lack of connectivity. This suggests strongly that both increasing sample size and enhancing pinning through doping will allow further increases in trapped field performance of bulk MgB2.



rate research

Read More

The microstructures of MgB2 wires prepared by the powder-in-tube technique and subsequent hot isostatic pressing were investigated using transmission electron microscopy. Large amount of crystalline defects including small angle twisting, tilting, and bending boundaries, in which high densities of dislocations reside, were found forming sub-grains within MgB2 grains. It is believed that these defects resulted from particle deformation during the hot isostatic pressing process and are effective flux pinning centers that contribute to the high critical current densities of the wires at high temperatures and at high fields.
The critical current density (Jc) of hot isostatic pressed (HIPed) MgB2 wires, measured by d.c. transport and magnetization, is compared with that of similar wires annealed at ambient pressure. The HIPed wires have a higher Jc than the annealed wires, especially at high temperatures and magnetic fields, and higher irreversibility field (Hirr). The HIPed wires are promising for applications, with Jc>106 A/cm2 at 5 K and zero field and >104 A/cm2 at 1.5 T and 26.5 K, and Hirr ~ 17 T at 4 K. The improvement is attributed to a high density of structural defects, which are the likely source of vortex pinning. These defects, observed by transmission electron microscopy, include small angle twisting, tilting, and bending boundaries, resulting in the formation of sub-grains within MgB2 crystallites.
Low resistivity (clean) MgB2 bulk samples annealed in Mg vapor show an increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a factor of 2 in both transport and magnetic measurements. The best sample displayed Hirr above 14 T at 4.2 K and 6 T at 20 K. These changes were accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm and a lowering of the resistivity ratio from 15 to 3, while the critical temperature Tc decreased by only 1-2 K. These results point the way to make prepare MgB2 attractive for magnet applications.
We have developed disk-shaped MgB2 bulk superconducting magnets (20, 30 mm in diameter, 10 mm in thickness) using the in-situ process from Mg and B powders and evaluated the temperature dependence of trapped magnetic field. A pair of two disc-shaped bulks of 30 mm in diameter and 10 mm in thickness magnetized by field-cooling condition showed trapped fields of 1.2, 2.8 and 3.1 T at 30, 20 and 17.5 K, respectively. High trapped field over 3 T was recorded for the first time.
97 - L. Gozzelino 2001
An extended magneto-optical (MO) analysis of samples cut from high-density pellets of MgB2 is reported. For sake of comparison some magnetic measurements and critical values are also shown. Notwithstanding the fact that the optical and SEM images exhibit grains with different shape and size, all the samples investigated by MO analysis (three specimens of different shape and size) enter as a whole into a critical state. The current at different temperatures and fields, in a phase zone accessible to MO are calculated by means of a quantitative analysis. The analysis, based on the inversion of the Biot-Savart law, corresponds to three regimes: under-critical, critical and over-critical, respectively. A possible qualitative interpretation of the absence of magnetic granularity is given in the framework of a critical state likely reached by a network of strongly coupled Josephson Junctions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا