Do you want to publish a course? Click here

Temperature evolution of infrared- and Raman-active phonons in graphite

128   0   0.0 ( 0 )
 Added by Michele Lazzeri
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a comparative experimental and theoretical study of the temperature dependence up to 700 K of the frequency and linewidths of the graphite E1u and E2g optical phonons (~1590 and 1580 cm-1) by infra-red (IR) and Raman spectroscopy. Despite their similar character, the temperature dependence of the two modes is quite different, being, e.g., the frequency shift of the IR-active E1u mode is almost twice as big as that of the Raman active E2g mode. Ab initio calculations of the anharmonic properties are in remarkable agreement with measurements and explain the observed behavior.



rate research

Read More

155 - Y. Kim , X. Chen , Z. Wang 2011
Inelastic light scattering spectra of Bi_2Se_3 and Sb_2Te_3 single crystals have been measured over the temperature range from 5 K to 300 K. The temperature dependence of dominant A^{2}_{1g} phonons shows similar behavior in both materials. The temperature dependence of the peak position and linewidth is analyzed considering the anharmonic decay of optical phonons and the material thermal expansion. This work suggests that Raman spectroscopy can be used for thermometry in Bi_2Se_3- and Sb_2Te_3-based devices in a wide temperature range.
165 - Hugen Yan , Daohua Song , et al 2009
Time-resolved Raman spectroscopy has been applied to probe the anharmonic coupling and electron-phonon interaction of optical phonons in graphite. From the decay of the transient anti-Stokes scattering of the G-mode following ultrafast excitation, we measured a lifetime of 2.2+/-0.1ps for zone-center optical phonons. We also observed a transient stiffening of G-mode phonons, an effect attributed to the reduction of the electron-phonon coupling for high electronic temperatures.
High quality single crystals of Bi2Se3 were grown using a modified Bridgman technique, the detailed study were carried out using Raman spectroscopy and characterized by Laue diffraction and high resolution transmission electron microscopy. Polarized Raman scattering measurements were also carried out, and both the A1g and A2g phonon modes showed strong polarization effect, which is consistent with the theoretical prediction. The temperature dependent study (in the temperature range 83 K to 523 K of Raman active modes were reported and observed to follow a systematic red shift. The frequency of these phonon modes are found to vary linearly with temperature and can be explained by first order temperature co-efficient. The temperature co-efficient for A11g, E2g and A21g modes were estimated to be -1.44*10-2, -1.94*10-2 and -1.95*10-2cm-1/K respectively.
We have investigated the anisotropic thermal expansion of graphite using ab-initio calculation of lattice dynamics and anharmonicity of the phonons, which reveal that the negative thermal expansion (NTE) in the a-b plane below 600 K and very large positive thermal expansion along the c-axis up to high temperatures arise due to various phonons polarized along the c-axis. While the NTE arises from the anharmonicity of transverse phonons over a broad energy range up to 60 meV, the large positive expansion along the c-axis occurs largely due to the longitudinal optic phonon modes around 16 meV and a large linear compressibility along the c-axis. The hugely anisotropic bonding in graphite is found to be responsible for wide difference in the energy range of the transverse and longitudinal phonon modes polarized along the c-axis, which are responsible for the anomalous thermal expansion behavior. This behaviour is in contrast to other nearly isotropic hexagonal structures like water-ice, which show anomalous thermal expansion in a small temperature range arising from a narrow energy range of phonons.
Multi-layer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multi-layer graphene. Our work is a prerequisite to experimental non-destructive identification and synthesis of rhombohedral graphite.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا