Do you want to publish a course? Click here

The sudden appearance of CO emission in LHA 115-S 65

147   0   0.0 ( 0 )
 Added by Mary Oksala
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular emission has been detected in several Magellanic Cloud B[e] supergiants. In this Letter, we report on the detection of CO band head emission in the B[e] supergiant LHA 115-S 65, and present a K-band near-infrared spectrum obtained with the Spectrograph for INtegral Field Observation in the Near-Infrared (SINFONI; R=4500) on the ESO VLT UT4 telescope. The observed molecular band head emission in S 65 is quite surprising in light of a previous non-detection by McGregor et al. 1989, as well as a high resolution (R=50000) Gemini/Phoenix spectrum of this star taken nine months earlier showing no emission. Based on analysis of the optical spectrum by Kraus et al. 2010, we suspect that the sudden appearance of molecular emission could be due to density build up in an outflowing viscous disk, as seen for Be stars. This new discovery, combined with variability in two other similar evolved massive stars, indicates an evolutionary link between B[e] supergiants and LBVs.



rate research

Read More

We report on the measurement of coherent radio emission from the electron beam sudden appearance at the Telescope Array Electron Light Source facility. This emission was detected by four independent radio detector setups sensitive to frequencies ranging from 50 MHz up to 12.5 GHz. We show that this phenomenon can be understood as a special case of coherent transition radiation by comparing the observed results with simulations. The in-nature application of this signal is given by the emission of cosmic ray or neutrino induced particle cascades traversing different media such as air, rock and ice.
We aim to improve our knowledge on the structure and dynamics of the circumstellar disk of the LMC B[e] supergiant LHA 120-S 73. High-resolution optical and near-IR spectroscopic data were obtained over a period of 16 and 7 years, respectively. The spectra cover the diagnostic emission lines from [CaII] and [OI], as well as the CO bands. These features trace the disk at different distances from the star. We analyzed the kinematics of the individual emission regions by modeling their emission profiles. A low-resolution mid-infrared spectrum was obtained as well, which provides information on the composition of the dusty disk. All diagnostic emission features display double-peaked line profiles, which we interpret as due to Keplerian rotation. We find that LHA 120-S 73 is surrounded by at least four individual rings of material with alternating densities (or by a disk with strongly non-monotonic radial density distribution). Moreover, we find that the molecular ring must have gaps or at least strong density inhomogeneities, or in other words, a clumpy structure. The mid-infrared spectrum displays features of oxygen- and carbon-rich grain species, which indicates a long-lived, stable dusty disk. We cannot confirm the previously reported high value for the stellar rotation velocity. The line profile of HeI 5876 A is strongly variable in both width and shape and resembles of those seen in non-radially pulsating stars. A proper determination of the real underlying stellar rotation velocity is hence not possible. The existence of multiple stable and clumpy rings of alternating density recalls ring structures around planets. Although there is currently insufficient observational evidence, it is tempting to propose a scenario with one (or more) minor bodies or planets revolving around LHA 120-S 73 and stabilizing the ring system, in analogy to the shepherd moons in planetary systems.
B[e] supergiants (SGs) are massive post-main-sequence stars, surrounded by a complex circumstellar (CS) environment. The aim of this work is to investigate the structure and kinematics of the CS disc of the B[e] SG LHA 120-S 35. We used high-resolution optical spectra obtained in different years to model the forbidden emission lines and determine the kinematical properties of their line-forming regions, assuming Keplerian rotation. We also used low-resolution near-infrared (IR) spectra to explore the variability of molecular emission. LHA 120-S 35 displays spectral variability in both optical and IR regions. The P-Cygni line profiles of H I, as well as those of Fe II and O I, suggest the presence of a strong bipolar clumped wind. We distinguish density enhancements in the P-Cygni absorption component of the first Balmer lines, which show variations in both velocity and strength. The P-Cygni profile emission component is double-peaked, indicating the presence of a rotating CS disc. We also observe line-profile variations in the permitted and forbidden features of Fe II and O I. In the IR, we detect variations in the intensity of the H I emission lines as well as in the emission of the CO band-heads. Moreover, we find that the profiles of each [Ca II] and [O I] emission lines contain contributions from spatially different (complete or partial) rings. Globally, we find evidence of detached multi-ring structures, revealing density variations along the disc. We suggest that LHA 120-S 35 has passed through the red-supergiant (RSG) phase and evolves back bluewards in the Hertzsprung-Russell diagram. The formation of the complex CS structure could be the result of the wind-wind interactions of the post-RSG wind with the previously ejected material from the RSG. However, the presence of a binary companion can not be excluded. Finally, we find that LHA 120-S 35 belongs to a young stellar cluster.
It was recently claimed that the magnetic O-type star HD 54879 exhibits important radial velocity variability indicative of its presence in a spectroscopic binary. More remarkably, it was furthermore reported that the star underwent a short, sudden variation in spectral type and magnetic field. In this Letter we examine new Narval and ESPaDOnS data of this star in addition to the previously-published FORS2 data and conclude that both the reported velocity variations and the sudden spectral and magnetic changes are spurious.
Elastic scattering of photons from 12C has been investigated using quasi-monoenergetic tagged photons with energies in the range 65 - 115 MeV at laboratory angles of 60 deg, 120 deg, and 150 deg at the Tagged-Photon Facility at the MAX IV Laboratory in Lund, Sweden. A phenomenological model was employed to provide an estimate of the sensitivity of the 12C(g,g)12C cross section to the bound-nucleon polarizabilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا