No Arabic abstract
Elastic scattering of photons from 12C has been investigated using quasi-monoenergetic tagged photons with energies in the range 65 - 115 MeV at laboratory angles of 60 deg, 120 deg, and 150 deg at the Tagged-Photon Facility at the MAX IV Laboratory in Lund, Sweden. A phenomenological model was employed to provide an estimate of the sensitivity of the 12C(g,g)12C cross section to the bound-nucleon polarizabilities.
Cross sections for uc{6}{Li}($gamma$,$gamma$) uc{6}{Li} have been measured at the High Intensity Gamma-Ray Source (HIGS) and the sensitivity of these cross sections to the nucleon isoscalar polarizabilities was studied. Data were collected using a quasi-monoenergetic 86 MeV photon beam at photon scattering angles of 40$^{circ}$--160$^{circ}$. These results are an extension of a previous measurement at a lower energy. The earlier work indicated that the uc{6}{Li}($gamma$,$gamma$) uc{6}{Li} reaction at 60 MeV provides a means of extracting the nucleon polarizabilities; this work demonstrates that the sensitivity of the cross section to the polarizabilities is increased at 86 MeV. A full theoretical treatment is needed to verify this conclusion and produce values of the polarizabilities.
The three-dimensional picture of quarks and gluons in the proton is set to be revealed through Deeply virtual Compton scattering while a critically important puzzle in the one-dimensional picture remains, namely, the origins of the EMC effect. Incoherent nuclear DVCS, i.e. DVCS on a nucleon inside a nucleus, can reveal the 3D partonic structure of the bound nucleon and shed a new light on the EMC effect. However, the Fermi motion of the struck nucleon, off-shell effects and final-state interactions (FSIs) complicate this parton level interpretation. We propose here a measurement of incoherent DVCS with a tagging of the recoiling spectator system (nucleus A-1) to systematically control nuclear effects. Through spectator-tagged DVCS, a fully detected final state presents a unique opportunity to systematically study these nuclear effects and cleanly observe possible modification of the nucleons quark distributions. We propose to measure the DVCS beam-spin asymmetries (BSAs) on $^4$He and deuterium targets. The reaction $^4$He$(e,e^{prime}gamma,p,^3$H$)$ with a fully detected final state has the rare ability to simultaneously quantify FSIs, measure initial nucleon momentum, and provide a sensitive probe to other nuclear effects at the parton level. The DVCS BSA on a (quasi-free) neutron will be measured by tagging a spectator proton with a deuteron target. Similarly, a bound neutron measurement detects a spectator $^3$He off a $^4$He target. These two observables will allow for a self-contained measurement of the neutron off-forward EMC Effect.
Dissipative 12C+12C reactions at 95 MeV are fully detected in charge with the GARFIELD and RCo apparatuses at LNL. A comparison to a dedicated Hauser-Feshbach calculation allows to select events which correspond, to a large extent, to the statistical evaporation of highly excited 24Mg, as well as to extract information on the isotopic distribution of the evaporation residues in coincidence with their complete evaporation chain. Residual deviations from a statistical behaviour are observed in alpha yields and attributed to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay.
Double-polarization observables in the reaction $vec{e}p rightarrow evec{p}gamma{}$ have been measured at $Q^2=0.33 (GeV/c)^2$. The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function $P_{LT}^perp$ is extracted for the first time, with the value $(-15.4 pm 3.3 (stat.)^{+1.5}_{-2.4} (syst.)) GeV^{-2}$, using the low-energy theorem for Virtual Compton Sattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.
The 16.1MeV 2+ resonance in 12C situated slightly above the proton threshold can decay by proton-, $alpha$-, and $gamma$ emission. The partial width for proton emission cannot be directly measured due to the low proton energy and the small branching ratio. Instead it must be indirectly derived from other observables. However, due to several inconsistent data the derived partial width varies by almost a factor 2 dependent on the data used. Here we trace the majority of this inconsistency to different measurements of the $(p,alpha)$ cross sections. We have remeasured this cross section using modern large area silicon strip detectors allowing to measure all final state particles, which circumvents a normalization issue affecting some of the previous measurements. Based on this we determine $Gamma_{p}$ = 21.0(13)eV. We discuss the implications for other observables related to the 16.1 MeV $2^{+}$ resonance and for isospin symmetry in the $A=12$ system. In addition, we conclude that the dataset currently used for the NACRE and NACRE II evaluation of the $^{11}mathrm{B}(p,3alpha)$ reaction should be scaled by a factor of 2/3. This impacts the reaction rate accordingly.