Do you want to publish a course? Click here

Optical Response of DyN

90   0   0.0 ( 0 )
 Added by Muhammad Azeem
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report measurements of the optical response of polycrystalline DyN thin films. The frequency-dependent complex refractive index in the near IR-visible-near UV was determined by fitting reflection/transmission spectra. In conjunction with resistivity measurements these identify DyN as a semiconductor with 1.2 eV optical gap. When doped by nitrogen vacancies it shows free carrier absorption and a blue-shifted gap associated with the Moss-Burstein effect. The refractive index of 2.0+/-0.1 depends only weakly on energy. Far infrared reflectivity data show a polar phonon of frequency 280 cm-1 and dielectric strength delta epsilon= 20.



rate research

Read More

The Raman effect -- inelastic scattering of light by lattice vibrations (phonons) -- produces an optical response closely tied to a materials crystal structure. Here we show that resonant optical excitation of IR and Raman phonons gives rise to a Raman scattering effect that can induce giant shifts to the refractive index and induce new optical constants that are forbidden in the equilibrium crystal structure. We complete the description of light-matter interactions mediated by coupled IR and Raman phonons in crystalline insulators -- currently the focus of numerous experiments aiming to dynamically control material properties -- by including a forgotten pathway through the nonlinear lattice polarizability. Our work expands the toolset for control and development of new optical technologies by revealing that the absorption of light within the terahertz gap can enable control of optical properties of materials over a broad frequency range.
The ability to tune the optical response of a material via electrostatic gating is crucial for optoelectronic applications, such as electro-optic modulators, saturable absorbers, optical limiters, photodetectors and transparent electrodes. The band structure of single layer graphene (SLG), with zero-gap, linearly dispersive conduction and valence bands, enables an easy control of the Fermi energy E$_F$ and of the threshold for interband optical absorption. Here, we report the tunability of the SLG non-equilibrium optical response in the near-infrared (1000-1700nm/0.729-1.240eV), exploring a range of E$_F$ from -650 to 250 meV by ionic liquid gating. As E$_F$ increases from the Dirac point to the threshold for Pauli blocking of interband absorption, we observe a slow-down of the photobleaching relaxation dynamics, which we attribute to the quenching of optical phonon emission from photoexcited charge carriers. For E$_F$ exceeding the Pauli blocking threshold, photobleaching eventually turns into photoinduced absorption, due to hot electrons excitation increasing SLG absorption. The ability to control both recovery time and sign of nonequilibrium optical response by electrostatic gating makes SLG ideal for tunable saturable absorbers with controlled dynamics.
A Kubo-Greenwood-like equation for the Gilbert damping parameter $alpha$ is presented that is based on the linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker (KKR) band structure method in combination with Coherent Potential Approximation (CPA) alloy theory allows it to be applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system Fe$_x$Co$_{1-x}$ as well as for a series of alloys of permalloy with 5d transition metals. To account for the thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The corresponding calculations for Ni correctly describe the rapid change of $alpha$ when small amounts of substitutional Cu are introduced.
Using first-principles density functional calculations, electronic and optical properties of ferromagnetic semiconductor EuO are investigated. In particular, we have developed a way to obtain the spin-dependent optical response of the magnetic materials, which is helpful to verify the spin-dependent band structure of EuO. Significantly different optical responses from spin-up and spin-down channels are obtained in both linear and nonlinear cases, making it possible to distinguish contributions from different spin-channels in the optical absorption spectra if spin-flip process can be neglected. In addition, the red-shift of the absorption edge from paramagnetic to ferromagnetic ordering is explained by exchange interactions. Using such method, we have also compared the optical properties of multiferroic EuO which is induced by strong epitaxial strain. Our results show that from tensile to compressive strain, the blue-shift of the leading absorption peaks in the optical spectra, the red-shift of the optical band gap in spin-up state can be observed, consistent to the energy difference between spin-splitting orbits. The spin-dependent nonlinear optical properties reveal that in the infrared and visible light region, the contributions to second-harmonic generation (SHG) susceptibilities are mainly from spin-majority channels. In addition, the strain effect is also discussed. With the increase of epitaxial strain, the larger energy shift of the leading absorption peaks, and the more remarkable nonlinear optical response can be obtained.
Exotic quantum phenomena have been demonstrated in recently discovered intrinsic magnetic topological insulator MnBi2Te4. At its two-dimensional limit, quantum anomalous Hall (QAH) effect and axion insulator state are observed in odd and even layers of MnBi2Te4, respectively. The measured band structures exhibit intriguing and complex properties. Here we employ low-temperature scanning tunneling microscopy to study its surface states and magnetic response. The quasiparticle interference patterns indicate that the electronic structures on the topmost layer of MnBi2Te4 is different from that of the expected out-of-plane A-type antiferromagnetic phase. The topological surface states may be embedded in deeper layers beneath the topmost surface. Such novel electronic structure presumably related to the modification of crystalline structure during sample cleaving and re-orientation of magnetic moment of Mn atoms near the surface. Mn dopants substituted at the Bi site on the second atomic layer are observed. The ratio of Mn/Bi substitutions is 5%. The electronic structures are fluctuating at atomic scale on the surface, which can affect the magnetism of MnBi2Te4. Our findings shed new lights on the magnetic property of MnBi2Te4 and thus the design of magnetic topological insulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا