Do you want to publish a course? Click here

Dependence of the energy resolution of a scintillating crystal on the readout integration time

106   0   0.0 ( 0 )
 Added by Davide Pinci
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The possibilty of performing high-rate calorimetry with a slow scintillator crystal is studied. In this experimental situation, to avoid pulse pile-up, it can be necessary to base the energy measurement on only a fraction of the emitted light, thus spoiling the energy resolution. This effect was experimentally studied with a BGO crystal and a photomultiplier followed by an integrator, by measuring the peak amplitude of the signals. The experimental data show that the energy resolution is exclusively due to the statistical fluctuations of the number of photoelectrons contributing to the peak amplitude. When such number is small its fluctuations are even smaller than those predicted by Poisson statistics. These results were confirmed by a Monte Carlo simulation which allows to estimate, in a general case, the energy resolution, given the total number of photoelectrons, the scintillation time and the integration time.



rate research

Read More

A new timing detector measuring ~50 MeV/c positrons is under development for the MEG II experiment, aiming at a time resolution $sigma_t sim 30~mathrm{ps}$. The resolution is expected to be achieved by measuring each positron time with multiple counters made of plastic scintillator readout by silicon photomultipliers (SiPMs). The purpose of this work is to demonstrate the time resolution for ~50 MeV/c positrons using prototype counters. Counters with dimensions of $90times 40times 5~mathrm{mm}^3$ readout by six SiPMs (three on each $40times 5~mathrm{mm}^2$ plane) were built with SiPMs from Hamamatsu Photonics and AdvanSiD and tested in a positron beam at the DA$Phi$NE Beam Test Facility. The time resolution was found to improve nearly as the square root of the number of counter hits. A time resolution $sigma_t=26.2pm1.3~mathrm{ps}$ was obtained with eight counters with Hamamatsu SiPMs. These results suggest that the design resolution is achievable in the MEG II experiment.
526 - S. Yang , Y.J. Sun , C. Li 2014
In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.
We present results for time resolution studies performed on three different scintillating plastics and two silicon photo-multipliers. These studies are intended to determine whether scintillating plastic/silicon photo-multiplier systems can be employed to provide a fast trigger signal for NICAs Multi Purpose Detector (MPD). Our results show that such a system made of cells with transverse dimensions of order of a few cm, coupled to silicon photo-multipliers, provides a time resolution of about 50 ps, which can be even further improved to attain the MPD trigger requirements of 20 ps.
210 - H. Gast , R. Greim , T. Kirn 2007
Using thin scintillating fibers with Silicon Photomultiplier (SiPM) readout a mo dular high-resolution charged-particle tracking detector has been designed. The fiber modules consist of 2 x 5 layers of 128 round multiclad scintillating fiber s of 0.250mm diameter. The fibers are read out by four SiPM arrays (8mm x 1mm) e ach on either end of the module.
This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applying a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا