No Arabic abstract
Being chosen as a differential operator of a special form, metric $eta$ operator becomes unitary equivalent to a one-dimensional Hermitian Hamiltonian with a natural supersymmetric structure. We show that fixing the superpartner of this Hamiltonian permits to determine both the metric operator and corresponding non-Hermitian Hamiltonian. Moreover, under an additional restriction on the non-Hermitian Hamiltonian, it becomes a superpartner of another Hermitian Hamiltonian.
Diagonalizable pseudo-Hermitian Hamiltonians with real and discrete spectra, which are superpartners of Hermitian Hamiltonians, must be $eta$-pseudo-Hermitian with Hermitian, positive-definite and non-singular $eta$ operators. We show that despite the fact that an $eta$ operator produced by a supersymmetric transformation, corresponding to the exact supersymmetry, is singular, it can be used to find the eigenfunctions of a Hermitian operator equivalent to the given pseudo-Hermitian Hamiltonian. Once the eigenfunctions of the Hermitian operator are found the operator may be reconstructed with the help of the spectral decomposition.
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be represented by those of the associated non-relativistic Witten model. The general discussion is extended to include the corresponding relativistic and non-relativistic resolvents. As example the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel is found in a closed form expression by utilising the energy-dependent Greens function of the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation for the Witten model is extended to the associated relativistic model.
We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator $-d^2/dx^2$ on $L^2[-a,a]$, $a>0$, that is, the one dimensional infinite square well. First of all, we classify these self-adjoint extensions in terms of several choices of the parameters determining each of the extensions. There are essentially two big groups of extensions. In one, the ground state has strictly positive energy. On the other, either the ground state has zero or negative energy. In the present paper, we show that each of the extensions belonging to the first group (energy of ground state strictly positive) has an infinite sequence of supersymmetric partners, such that the $ell$-th order partner differs in one energy level from both the $(ell-1)$-th and the $(ell+1)$-th order partners. In general, the eigenvalues for each of the self-adjoint extensions of $-d^2/dx^2$ come from a transcendental equation and are all infinite. For the case under our study, we determine the eigenvalues, which are also infinite, {all the extensions have a purely discrete spectrum,} and their respective eigenfunctions for all of its $ell$-th supersymmetric partners of each extension.
In recent years, many natural Hamiltonian systems, classical and quantum, with constants of motion of high degree, or symmetry operators of high order, have been found and studied. Most of these Hamiltonians, in the classical case, can be included in the family of extended Hamiltonians, geometrically characterized by the structure of warped manifold of their configuration manifold. For the extended manifolds, the characteristic constants of motion of high degree are polynomial in the momenta of determined form. We consider here a different form of the constants of motion, based on the factorization procedure developed by S. Kuru, J. Negro and others. We show that an important subclass of the extended Hamiltonians admits factorized constants of motion and we determine their expression. The classical constants may be non-polynomial in the momenta, but the factorization procedure allows, in a type of extended Hamiltonians, their quantization via shift and ladder operators, for systems of any finite dimension.
Quantum mechanics can be formulated in terms of phase-space functions, according to Wigners approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called generalized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup in disguise, namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The disguised counterparts of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.